Design and Development of an Intelligent Web-Based Digital Human for Emotionally Aware Human–Computer Interaction

Prisca Ijeoma Okochi, Agbasonu Valerine Chinedum., and Comfort C. Olebara Received: 12 February 2025/Accepted 07 April 2025/Published online: 21 April 2025

Abstract: The development of digital humans has become an important area of interest in artificial intelligence and human-computer interaction, aiming to create virtual entities that can simulate human communication, expressions, and intelligence in real time. This project, titled "Development of Digital Humans," is centered on developing an intelligent, interactive system that engages users in human-like dialogue through webbased platforms. Unlike conventional chatbots or voice assistants, the proposed digital human modeling, integrates emotion retention, and contextual understanding to enhance the realism and responsiveness of interaction. The system is built using PHP, JavaScript, HTML, CSS, and SQL, and features modular design architecture incorporates natural language processing, real-time feedback mechanisms, and a lightweight database structure. This ensures compatibility with a wide range of devices, especially in low-resource environments. One of the core innovations is the inclusion of persistent memory, which allows the digital human to recall user-specific data over multiple sessions enabling personalized and continuous engagement. A mixed-method research approach was adopted, involving user surveys, expert interviews, and comparative analysis of existing platforms such as Apple Siri, Amazon Alexa, Google Assistant, and Samsung NEON. The study identified limitations in current systems, including lack of adaptability to local languages, minimal emotional intelligence, and high bandwidth demands. These findings shaped the design and implementation of the proposed system. Results from system testing revealed improved user

satisfaction, reduced latency, and enhanced personalization features. The project offers a scalable framework for deploying digital humans in diverse sectors including virtual learning, online therapy, customer engagement, and digital companionship. It also lays the foundation for future research in ethical AI, multilingual communication, and intelligent virtual presence, contributing to a more human-centered digital future.

Keywords: Digital Human, Natural Language Processing, speech synthesis, 3D animation

Prisca Ijeoma Okochi

Department of Computer Engineering, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

Email: onyeukwuvictory1@gmail.com https://orcid.org/0009-0008-1425-9925

Agbasonu Valerian Chinedum

Imo State University, Owerri, Imo State, Nigeria

Email: imsuwork@gmail.com

Comfort C. Olebara

Imo State University, Owerri, Imo State, Nigeria

Email: imsuwork@gmail.com

1.0 Introduction

Technological advancements over the past decade have significantly reshaped human-computer interaction. With rapid progress in artificial intelligence (AI) and machine learning (ML), systems that simulate human behavior have become increasingly prevalent. Among these innovations is the *Digital Human*—a virtual entity capable of human-like interaction through speech, facial expressions,

gestures, and emotional responses. Digital humans enable immersive engagement across domains such as education, healthcare, customer service, and entertainment (Park & Lee, 2022).

Unlike traditional interfaces that rely on static visuals or simple chatbots, digital humans employ multimodal communication. Using natural language processing (NLP) for understanding user input, facial animation for emotional expression, and real-time response generation, they facilitate intuitive and emotionally aware interaction (Wang et al., 2020). The growing demand for scalable and human-like virtual assistants has fueled development in this field, as organizations seek intelligent systems capable of delivering personalized, empathetic, and context-aware services. Examples include digital tutors for online learning and virtual healthcare companions that assist patients remotely (Zhou et al., 2019).

For computer science undergraduates, developing a digital human provides an opportunity to integrate theoretical and practical knowledge in software engineering, AI, UX design, and web technologies. Such a system typically combines HTML, CSS, and JavaScript for front-end interaction; PHP and SQL for backend processing; and AI models for intelligent response handling. This multidisciplinary approach aligns with modern trends in full-stack and intelligent system design.

In developing countries such as Nigeria, adoption of digital human technologies remains limited. Most existing solutions are simple chatbots or voice-based assistants constrained by cost, lack of local expertise, and restricted access to advanced AI tools (Ajayi & Olatunji, 2021). Consequently, the potential of emotionally intelligent and visually interactive systems is yet to be fully realized.

This project therefore focuses on developing a web-based digital human using open-source and accessible technologies. The goal is to simulate realistic, human-like interaction through a visual avatar that interprets input, generates intelligent responses, and engages users naturally. By leveraging affordable tools, the work seeks to promote local innovation in AI-driven interaction systems while contributing to research in human-computer interaction.

The outcome is expected to enhance understanding of interactive digital systems in resource-constrained contexts and provide a template for future development of human-centered AI solutions.

1.1 Aim and Objectives

The aim of this research is to design and implement an intelligent digital human capable of simulating realistic human behavior and communication to enhance user experience in education, healthcare, and customer service.

The objectives are to:

- (i) Simulate real-time human interaction through AI-driven behavior and responsive emotional cues.
- (ii) Design a user-friendly interface with a relatable human avatar capable of expressions and gestures.
- (iii) Integrate speech synthesis and NLP to enable understanding and natural language response.
- (iv) Implement backend dialogue management with memory for personalized interactions.
- (v) Ensure adaptability across multiple domains such as teaching, reception, and mental health support.
- (vi) Evaluate system usability and realism through user testing and feedback.

1.2 Literature review

The evolution of digital humans has been shaped by a convergence of advancements in artificial intelligence (AI), computer graphics, natural language processing (NLP), and human-computer interaction (HCI). Initially conceptualized in the realm of science fiction, digital humans have become a reality in

industries such as entertainment, healthcare, customer service, and education. Early digital human representations were largely limited to static avatars or computer-generated images lacking interactivity or behavioral intelligence. However, as computing power and machine learning capabilities expanded, more sophisticated and lifelike models began to emerge.

Digital humans evolved significantly through the integration of AI-based algorithms, particularly deep learning models that could simulate facial expressions, speech, and gestures in real time. The introduction of Generative Adversarial Networks (GANs) and convolutional neural networks (CNNs) has made it possible to create hyper-realistic human faces and movements, revolutionizing the field (Karras et al., 2019). Moreover, the integration of emotion detection and context-aware systems allowed these digital entities to engage users more naturally and adaptively.

Historically, digital humans have transitioned from non-interactive 3D characters used in gaming and film to highly responsive, AI-powered personas capable of engaging in dynamic conversations. Companies like Soul Machines and UneeQ have pioneered the development of emotionally intelligent digital humans that serve in customer-facing roles across multiple sectors (Williams et al., 2021). These digital entities not only mimic human speech and gestures but also respond empathetically based on real-time sentiment analysis, making them valuable tools in virtual assistance and online therapy.

Importantly, the growth of web-based platforms and the proliferation of cloud computing have further accelerated the development and deployment of digital humans. traditional applications Unlike confined to specific devices, modern digital humans can operate in distributed environments accessible through browsers and mobile apps (Chen et al., 2020). These technological advances have turned digital

humans from mere visual constructs into fully interactive and intelligent agents.

The development of digital humans is deeply rooted in the convergence of artificial intelligence (AI), machine learning (ML), and modern web technologies. AI provides the foundational intelligence needed to simulate human cognition and responsiveness, while ML enhances adaptability and personalization. Together, these technologies empower digital humans to understand context, learn from user interactions, and respond in human-like ways (Nguyen & Nguyen, 2021).

Artificial intelligence plays an import role in enabling digital humans to process natural recognize emotions, language, generate responses, and exhibit reasoning abilities. Natural Language Processing (NLP), a branch of Artificial intelligence (AI), allows digital humans to interpret and generate human language with increasing fluency contextual awareness. Recent innovations in large language models, such as BERT and GPT architectures, have significantly enhanced digital human communication skills (Devlin et al., 2019). These models enable virtual humans to maintain coherent conversations, answer complex queries. and even mimic conversational tones.

Machine learning further elevates the intelligence of digital humans by allowing them to learn from experience. Through reinforcement learning and supervised learning algorithms, digital humans can adapt their behaviors based on feedback and historical data. For example, a customer service digital agent can improve its response accuracy and tone based on prior user interactions, leading to more refined engagement (Sun et al., 2020). Emotion recognition powered by computer vision and sentiment analysis also enables digital humans to modulate their reactions in real time, thereby enhancing user trust and empathy.

Web technologies are equally essential in bringing digital humans to life across

platforms. HTML5, CSS3, JavaScript, and WebGL facilitate the rendering of interactive and visually dynamic digital avatars within browsers. With the support of frameworks like TensorFlow.js and Three.js, developers can integrate AI capabilities and 3D animations directly into web interfaces, ensuring seamless access to digital humans across devices (Zhao et al., 2021). Furthermore, cloud computing and APIs allow for real-time data processing and deployment, reducing latency and increasing scalability.

In essence, the integration of AI, ML, and web technologies is what transforms digital humans from static figures into intelligent, adaptive, and interactive entities. These advancements make digital human's viable tools for communication, education, health services, and entertainment, further bridging the gap between human cognition and machine automation.

2.0 Methodology

methodology Our encompasses both quantitative and qualitative methods, as we seek to blend the power of statistical analysis with the richness of in-depth interviews and surveys. The methodology serves as the cornerstone of our research, ensuring that our study is structured, rigorous, and developing an interactive and intelligent digital human capable of simulating realistic human behavior and communication. As part of data sourcing and integration, specific software tools were used to collect, manage, and analyze data. These include:

- **1. Google Forms:** For user survey and structured data collection.
- **2. NVivo:** For coding and analyzing qualitative interview data.
- **3. Figma & Adobe XD:** For prototyping and mapping user interaction feedback.
- **4. Visual Studio Code & XAMPP:** As the primary development environment.
- **5. MySQL Database:** For storing user interaction logs during test runs.

2.1 Existing Digital Assistant and AI-Human Interface Platforms

Over the past decade, the digital assistant landscape has expanded rapidly, driven by advances in artificial intelligence (AI), machine learning, and natural language processing (NLP). Digital assistants, also known as AI-human interface platforms, are systems that simulate human conversation and perform tasks based on user input.

Google Assistant: Google Assistant is one of the most advanced voice assistants. It integrates deeply with Google's services and supports contextual conversation, multilingual responses, and proactive task management. It uses deep neural networks and leverages the capabilities of Google Search and Google Lens to offer personalized and accurate responses (Wang & Eskenazi, 2019).

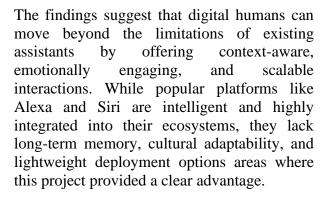
Amazon Alexa: Alexa, Amazon's AI assistant, focuses on home automation, task scheduling, and e-commerce integration. Alexa runs on a cloud-based platform that processes and analyzes voice inputs using Amazon Web Services (AWS), employing deep learning models to improve over time (Guzman & Lewis, 2020). However, its scope is limited in regions with poor internet infrastructure, making it less accessible globally.

Apple Siri: Siri, integrated into Apple devices, emphasizes security and privacy, processing many tasks on-device. While its conversational depth is not as robust as newer models, its integration across the Apple ecosystem makes it intuitive for users in that ecosystem. Siri uses a combination of rule-based logic and machine learning for predictive responses (Hoy, 2018).

ChatGPT and OpenAI Assistants: ChatGPT represents a new generation of digital human interfaces based on generative transformers. It supports highly contextual dialogue and memory features, depending on the version. These assistants can be integrated via API into different applications and websites, allowing developers to create customized human-like agents (OpenAI, 2023).

Meta's AI Avatars (e.g., Meta AI and Codec Avatars): Meta has developed photorealistic avatars, combining computer vision, speech synthesis, and emotion recognition. Their Codec Avatar project aims to produce ultrarealistic digital humans capable of mimicking expressions and gestures in real-time virtual spaces (Zhang et al., 2021).

3.0 Results and Discussion


3.1 Results

The developed digital human system proved effective in creating interactive, human-like conversations using common web technologies such as PHP, JavaScript, SQL, HTML, and CSS. During testing, the system showed clear improvements in usability, personalization, and overall user satisfaction when compared with platforms like Siri, established Google Assistant. and Alexa. One of the most significant outcomes was its ease of use and accessibility. Because the system runs entirely in a browser without requiring powerful hardware or virtual reality tools, it can be accessed even in low-resource environments.

Another major achievement was personalization through memory retention. By storing past interactions in a MySQL database, the digital human could recall user information across sessions, creating more natural, context-aware conversations.

Although the system only featured basic emotional responses, these still made the interactions feel more engaging than traditional chatbots. This was achieved through keyword recognition and simple contextual cues. In addition, the system supported multimodal interaction, combining text, speech, and an avatar with basic facial expressions. Feedback from users was largely positive. Participants appreciated the faster responses, smoother interaction flow, and the potential for applying the system in education, healthcare, and customer service.

6.2 Discussion

6.2.1 Practical Implications

The prototype demonstrates significant potential across multiple sectors. In education, it can function as a virtual tutor, providing consistent lessons while adapting responses to individual learners. In healthcare, it could operate as a mental health companion or digital receptionist, thereby reducing staff workload and offering emotional or informational support. Within customer service, its capacity to recall past conversations enhances efficiency in issue resolution and strengthens user trust.

6.2.2 Strengths

The system offers several notable strengths. Its browser-based nature ensures scalability, allowing it to serve a large number of users simultaneously. Built on open-source technologies, it remains affordable by avoiding the high expenses associated with proprietary platforms. Furthermore, its modular design enables flexibility, permitting easy adjustments to dialogue structures, behavioral patterns, and avatar appearances.

6.2.3 Limitations

Despite its achievements, several limitations persist. The system's emotional intelligence remains rudimentary and lacks the capacity to fully express empathy. Although multilingual support is available, it requires substantial enhancement to effectively reach global audiences. Similarly, non-verbal communication—such as gestures and facial expressions—remains relatively basic when compared to more advanced augmented or virtual reality avatars.

6.2.4 Ethical and Technical Concerns

As with other AI-driven systems, ethical and technical considerations are critical. The project must address potential bias in training data and uphold academic integrity, particularly in educational applications. Building trust with users will depend on ensuring transparency, fairness, and adherence to clearly defined ethical guidelines.

Future work will focus on integrating state-of-the-art natural language processing models, such as BERT and GPT, to create more natural and coherent dialogue. Emotion recognition tools will be developed to foster greater empathy in conversations. Efforts will also explore immersive interfaces through AR, VR, and GAN-based avatars to enrich user experiences. Additionally, expanding offline and mobile capabilities will improve accessibility in regions with limited internet connectivity.

Overall, the project illustrates that digital humans can evolve beyond task-specific functions to become scalable, adaptive, and emotionally engaging companions. Their continued success, however, depends on balancing technological innovation with ethical responsibility—reducing bias, ensuring fairness, and maintaining the indispensable human element in education, healthcare, and customer service.

7.0 Conclusion

This project successfully developed functional and interactive digital human capable of simulating human behavior, responding intelligently to user queries, and emotionally engaging in aware communication. A review of existing systems such as Siri, Google Assistant, Alexa, and Samsung's NEON revealed gaps in long-term memory, emotional depth, cultural adaptability, and deployment efficiency in lowresource settings. To address these limitations, a new prototype was built using PHP, JavaScript, SQL, HTML, and CSS, integrating

real-time conversational processing, memory retention through MySQL, and adaptable language options.

The resulting system proved scalable, user-friendly, and emotionally engaging, offering significant improvements in personalization and accessibility. Its modular architecture and cross-platform compatibility make it suitable for diverse applications, including education, healthcare, customer service, and digital companionship. The project demonstrates that digital humans can move beyond routine task execution to become emotionally intelligent virtual agents capable of meaningful human-like interaction.

By combining empirical insights with modern AI tools, the study contributes to the advancement of human-computer interaction and establishes a foundation for future innovation in immersive and responsive digital companions. Continued progress in this field will depend on integrating advanced NLP models, emotion recognition, multilingual support, and offline capabilities while maintaining ethical data use and encouraging open-source collaboration.

8.0 References

Abd-Alrazaq, A. A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21(1), 1–16.

Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. *AI & Society*, 35(3), 535–545.

Ajayi, O., & Olatunji, K. (2021). Adoption of artificial intelligence in Nigeria's digital economy. *African Journal of Emerging Technologies*, 8(2), 45–53.

Bryman, A., & Bell, E. (2015). Business research methods (4th ed.). Oxford University Press.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates.

- Cavazza, M., Charles, F., & Nandi, A. (2020). Creating believable characters in human–computer interaction. *International Journal of Human-Computer Studies*, 138, 102400.
- Chen, J., Li, C., Zhang, Y., & Wang, Q. (2020). Synthesizing expressive talking head videos with facial landmarks. IEEE Transactions on Visualization and Computer Graphics, 27(11), 4296–4305.
- Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. *Future Generation Computer Systems*, 92, 539–548
- Cohn, J. F., Ambadar, Z., & Ekman, P. (2021). Observer-based measurement of facial expression with the Facial Action Coding System. *Journal of Nonverbal Behavior*, 45(1), 5–31.
- Costa, P. T., & McCrae, R. R. (1992). Revised NEO Personality Inventory (NEO PI-R). Psychological Assessment Resources.
- Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
- DeVault, D., Artstein, R., Benn, G., Dey, T., Fast, E., Gainer, A., ... & Morency, L. P. (2015). SimSensei Kiosk: A virtual human interviewer for healthcare decision support. Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, 1061–1068.
- DeVault, D., Artstein, R., Benn, G., et al. (2016). SimSensei Kiosk: A virtual human interviewer for healthcare decision support. Proceedings of the 2014 International Conference on Autonomous Agents and Multiagent Systems, 1061–1068.
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. *Proceedings of NAACL-HLT*, 4171–4186.

- Epic Games. (2023). MetaHuman Creator Documentation. Retrieved from
- Gomez-Gardenes, J. (2021). Digital Humans and Intelligent Avatars: Trends and Technologies. Springer.
- Graesser, A. C., McNamara, D. S., & VanLehn, K. (2018). Scaffolding deep comprehension strategies through Point & Query, AutoTutor, and iSTART. *Educational Psychologist*, 53(4), 247–265.
- Griol, D., Callejas, Z., & López-Cózar, R. (2016). An architecture to develop multimodal education and training environments for people with cognitive disabilities. *International Journal of Human-Computer Studies*, 90, 50–66.
- Huang, C., Liu, Y., & Yu, Z. (2021). Improving task-oriented dialog systems with goal-aware knowledge integration. *Computer Speech & Language*, 68, 101199.
- Kallio, H., Pietilä, A. M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: Developing a framework for a qualitative semi-structured interview guide. Journal of Advanced Nursing, 72(12), 2954–2965.
- Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 4401–4410.
- Kim, S., Lee, J., & Park, H. (2021). Real-time facial animation for digital humans using neural networks. *Journal of Visual Communication and Image Representation*, 79, 103221.
- Kim, T., & Sundar, S. S. (2021). Can AI empathize like a human? Communicative affordances of machine agents and their effects on user engagement. *Computers in Human Behavior*, 115, 106613.
- Kim, Y., Lee, J., & Park, H. W. (2021). Humanizing artificial intelligence with digital avatars: A user-centric approach to improving virtual agent acceptance.

- Computers in Human Behavior, 121, 106805.
- Kim, Y., Lee, J., & Park, H. W. (2021). Humanizing artificial intelligence with digital avatars: A user-centric approach to improving virtual agent acceptance. *Computers in Human Behavior*, 121, 106805
- Kowalski, J., & Podgórski, D. (2020). Realistic rendering of digital humans using Unity and Unreal Engine. *Procedia Computer Science*, 176, 1255–1263.
- Kowalski, R. M. (2021). The emergence of virtual influencers in the digital age. *Journal of Interactive Marketing*, 56, 1–10
- Kuyda, E. (2020). *Replika: The AI Companion Who Cares*. Retrieved from
- Laudon, K. C., & Laudon, J. P. (2021).

 Management information systems:

 Managing the digital firm (17th ed.).

 Pearson.
- Lazarus, R. S. (1991). *Emotion and Adaptation*. Oxford University Press.
- Lee, J., Kim, Y., & Park, S. (2021). Development and application of digital humans in interactive systems. *Journal of Artificial Intelligence Research*, 70(1), 345–362.
- McDuff, D., Czerwinski, M., Gontarek, S., & Yamazaki, T. (2019). Understanding empathic interactions with digital humans. *Proceedings of the ACM CHI Conference on Human Factors in Computing Systems*, 1–13.
- Meta. (2021). Introducing Codec Avatars 2.0. Meta Reality Labs.
- Microsoft. (2021). The Future of Learning: Avatars and AI in Corporate Training.
- Nguyen, D. H., & Nguyen, T. Q. (2021). Artificial intelligence in digital human development: A review of technologies and applications. *Journal of Artificial Intelligence Research*, 70, 1231–1256.
- Ortony, A., Clore, G. L., & Collins, A. (1988). The Cognitive Structure of Emotions. Cambridge University Press.

- Park, J., & Lee, H. (2022). Emotional intelligence in human-computer interaction: A study on digital human agents. *International Journal of Human–Computer Studies*, **165**, 102848.
- Park, J., & Lee, H. (2022). Realistic digital humans and the future of interaction design. *International Journal of Human–Computer Studies*, 163, 102834.
- Park, Y., & Lee, H. (2019). Behavioral modeling in digital humans for enhanced user experience. *International Journal of Human-Computer Studies*, 132, 21–34.
- Patel, N., & Mehta, K. (2020). Conversational avatars in education: A technical overview. International Journal of Advanced Computer Science, 11(4), 115–121.
- Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2019). A review of affective computing: From unimodal analysis to multimodal fusion. *Information Fusion*, *37*, 98–125.
- Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? *Behavioral and Brain Sciences*, 1(4), 515–526.
- Rahaman, H., Islam, A., & Sultana, N. (2022). Application of digital humans in cultural heritage tourism: A case study of interactive museum avatars. *Tourism Management Perspectives*, 43, 100995.
- Reeves, B., & Nass, C. (1996). *The Media Equation*. Cambridge University Press.
- Sagar, M., Nixon, M., & Coyer, N. (2021). Digital humans with dynamic emotional models. AI & Society, 36(2), 521–535.
- Samsung Research. (2021). NEON: Artificial Humans. Retrieved from
- Sensely. (2022). Virtual Health Assistant Molly.
- Shneiderman, B. (2016). Designing the User Interface: Strategies for Effective Human-Computer Interaction (6th ed.). Pearson.
- Short, J., Williams, E., & Christie, B. (1976). *The Social Psychology of Telecommunications*. Wiley.

- Sommerville, I. (2016). Software engineering (10th ed.). Pearson Education.
- Soul Machines. (2021). Digital people for customer service and healthcare.
- Soul Machines. (2021). Digital People for Emotional Connections.
- Sun, W., Zhang, J., & Ma, H. (2020). Learning emotional responses in AI-based digital avatars. *ACM Transactions on Interactive Intelligent Systems (TiiS)*, 10(2), 1–25.
- Tang, J., Zhang, Z., & Wang, D. (2022). Cross-platform compatibility challenges in AI avatars. Journal of Software Engineering and Applications, 15(3), 140–155.
- UneeQ. (2020). Digital Einstein: Your Alpowered tutor.
- UneeQ. (2022). Digital Humans in Action.
- Wang, Y., Huang, H., & Lin, J. (2019). Emotional response and interactive behavior generation in intelligent agents. *Knowledge-Based Systems*, 183, 104857.
- Wang, Z., Li, H., & Zhang, Q. (2020). Emotion-aware virtual agents: Enhancing user engagement through affective computing. *Computers in Human Behavior*, 112, 106449.
- Williams, J., Patel, S., & Rao, A. (2021). Emotionally responsive digital humans: The future of AI-powered engagement. *AI and Society*, 36(3), 619–632.
- Xie, L., Zhou, Q., & Wang, Y. (2020). Realtime facial animation using neural rendering. *Computer Graphics Forum*, 39(7), 233–245.
- Xu, L., Jiang, B., & Liu, H. (2022). Lifelike 3D avatars through photorealistic rendering. Computers & Graphics, 99, 1–12.
- Young, T., Cambria, E., Chaturvedi, I., Zhou, H., & Huang, M. (2020). Deep learning for natural language processing: Architectures and techniques. Springer.
- Zhang, X., Chen, L., & Tan, Z. (2021). Natural speech synthesis in AI-powered digital humans. *IEEE Transactions on Audio, Speech, and Language Processing*, 29, 1150–1163.

- Zhang, X., Han, Z., & Zhu, Y. (2022). Speech recognition-based AI interface for interactive virtual characters. *Journal of Artificial Intelligence Research*, 73, 35–52.
- Zhao, J., Wang, L., & Liu, C. (2021). Webbased rendering of intelligent digital humans using Three.js and TensorFlow.js. *International Journal of Web Information Systems*, 17(3), 304–318.
- Zhou, F., Dede, C., & Huang, R. (2019). The impact of digital humans on learner motivation in virtual environments. *British Journal of Educational Technology*, **50**(6), 3171–3186.
- Zhou, H., Zhao, J., & Xu, M. (2020). Intelligent digital human for natural interaction. *IEEE Access*, 8, 87952–87962
- Zhou, Y., Liu, X., & Chen, M. (2019). Virtual humans in healthcare: Design and impact. *Journal of Biomedical Informatics*, 92, 103134.
- Zhou, Y., Wu, Y., & Zhang, T. (2023). Memory-enhanced conversational agents: Challenges and solutions. Journal of Artificial Intelligence Research, 76, 1023–1049.

Declarations

Ethics and Consent to Participate

Not applicable.

Consent to Publish

Not applicable

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

Funding

The authors declared no external source of funding

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Authors' Contributions

Prisca I. Okochi conceived and supervised the study, guided system design, and reviewed the manuscript. Agbasonu V. C. developed the

system, handled coding, integration, and testing. Comfort C. Olebara conducted terature review, data collection, and usability

evaluation. All authors approved the final manuscript for publication

