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Abstract :Infertility affects millions of 

couples globally, with in vitro fertilization 

(IVF) emerging as a common assisted 

reproductive technology (ART). Despite its 

success, predicting IVF outcomes remains 

complex due to the multifactorial nature of 

fertility. This study presents a deep learning-

based approach to predict IVF success in 

Nigeria by analyzing and comparing the 

predictive power of male and female fertility 

factors. A comprehensive dataset comprising 

clinical and laboratory data from both 

partners was collected and preprocessed. 

Convolutional Neural Networks (CNNs) and 

Deep Neural Networks (DNNs) were 

employed to develop models trained on male-

only, female-only, and combined datasets. 

Evaluation metrics such as accuracy, 

precision, recall, F1-score, and AUC-ROC 

were used to assess performance. The results 

reveal that models trained on combined male 

and female factors significantly outperformed 

those trained on individual datasets, with an 

overall accuracy of 87.3% and an AUC of 

0.91. Female age, oocyte quality, and 

endometrial thickness were identified as 

strong predictors, while sperm morphology 

and motility also showed substantial 

influence. These findings highlight the 

importance of integrated data analysis for 

improving IVF prognostication. This 

research underscores the potential of AI-

driven decision support systems in enhancing 

clinical strategies and personalized treatment 

planning for infertile couples. 
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1.0 Introduction 
 

Infertility affects approximately 12–15% of 

couples globally, and both male and female 

factors contribute to it significantly. IVF is 

now a very prominent means of assisted 

reproductive technology (ART) that promises 

a lot to numerous couples who are having 

difficulties in conceiving. ART has 

developed so much, but the success rate of 

IVF globally is still only around 30% on each 

try. The consequence is that we need better 

prediction models is crucial in enhancing 

doctors' ability to offer best advice and tailor 

treatments to patients. This is more 

significant for Nigeria, where fertility issues 

are boasted by the avialability of limited 

access to high-technology reproductive 

technologies, cultural and social pressures, 

and the financial and emotional cost of 

infertility, there is a great necessity for 

providing accurate and equitable prediction 

models for IVF outcomes to maximize 

clinical success rates and best utilize 

available resources. 

Traditional IVF prediction methods have 

relied on linear statistical models and 

doctor/patient experience, particularly with 

the most important female variables of age, 

hormone concentrations, and ovarian reserve. 

These also provide useful information but are 

mailto:etuk.enefiok@mouau.edu.ng
mailto:saintbeloved@yahoo.com
mailto:promise.enyindah@uniport.edu.ng


Journal of Natural and Artificial Scientific Systems, 2025, 12(6): 33-41 34 

   

often unable to capture satisfactorily the 

complex, nonlinear interactions between the 

numerous variables involved in reproductive 

success. Recent research indicates that the 

addition of both partners' information 

markedly enhances predictability. For 

instance, in a study with the use of machine 

learning techniques such as XGBoost, it was 

demonstrated that including male and female 

reproductive factors improved the prediction 

of clinical pregnancy outcomes from frozen-

thawed single euploid embryo transfers. 

Some reported literature have also agreed that 

the incoporation of male fertility parameters 

(such as sperm motility, morphology, and 

DNA integrity) can significantly increases the 

reliability of IVF predictions. 

The use of artificial intelligence (AI), and 

specifically deep learning (DL), has 

transformed healthcare's perception of data. 

Deep Learning (DL) algorithms like 

Convolutional Neural Networks (CNNs) and 

Deep Neural Networks (DNNs) have been 

more successful than ever before in pattern 

identification and were applied at various 

stages of the IVF process. Deep learning 

algorithms worked much better than 

embryologists in choosing embryos through 

time-lapse image analysis, and this has led to 

higher implantation and live-birth rates. All 

these successes demonstrate that AI-based 

technologies can transform reproductive 

medicine by enhancing diagnostic accuracy 

and treatment effects. 

Despite these advances, there remains an 

important gap in literature comparing 

predictive efficacy of male-only, female-

only, and combined fertility parameters 

through deep learning techniques. This gap 

must be filled, given that male infertility 

accounts for over 30% of all infertilities and 

additional consideration of both partners' 

information may provide more symmetric, 

accurate, and comprehensive models for 

predicting success with IVF. This project will 

develop and compare deep learning models 

from male, female, and combined fertility 

data to improve the accuracy of IVF outcome 

predictions and identify the most significant 

reproductive characteristics using 

explainable AI techniques. 

This study presents an evidence-based 

strategy for individualized IVF prognosis, 

optimizing treatment success rates, 

optimizing resource allocation to fertility 

centers, and informing reproductive health 

policy, particularly in Nigeria and other 

similar low- and middle-income countries. 

The outcome of this study willprovide 

information on the improvement of the 

application of AI-based decision support 

systems, especially in reproductive medicine 

. Such improvement can lead to providing a 

solution to equitable, data-informed treatment 

practices for infertile couples worldwide. 
 

2.0 Materials and Method 
 

This study applies a deep learning framework 

to predict IVF fertilization (IVF) success by 

analyzing male and female fertility 

indicators. The methodological pipeline 

comprises four key stages: dataset acquisition 

and characterization, data preprocessing, 

model development, and model evaluation. 

2.0 Materials and Methods 

2.1 Dataset Acquisition and Description 
 

The dataset for the current study consists of 

7,412 IVF cycles from three IVF centers, two 

in Nigeria and one South African, between 

2019 and 2024. The dataset was 

supplemented by an available IVF dataset 

from the Human Fertility e-Registry (HFE-R, 

2023). All the reported cycles had clearly 

defined outcomes, with clinical pregnancy 

confirmed by the detection of a fetal heartbeat 

at six weeks gestation. 
 

2.1.1 Categories of Data 
 

The data were classified into several 

significant categories. The characteristics of 

women included age, body mass index 

(BMI), antral follicle count (AFC), anti-

Müllerian hormone (AMH), follicle-

stimulating hormone (FSH), luteinizing 

hormone (LH), number and quality of 

retrieved oocytes, endometrial thickness, and 

history of IVF. Male factors involved sperm 
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count, motility, morphology assessed with 

strict Kruger criteria, semen volume, 

concentration, DNA fragmentation index 

(DFI), and varicocele presence, and semen 

processing method. Embryological factors 

involved time-lapse cleavage times, 

blastocyst grade, zona pellucida thickness, 

and culture media of the embryo. The 

outcome measures were clinical pregnancy 

and live birth. 
 

2.2 Model Architecture and Training 

 

Three model architectures were employed in 

this work. The first was a Deep Neural 

Network (DNN), which was a feedforward 

network that contained four dense layers of 

256, 128, 64, and 32 neurons, respectively. 

The ReLU activation functions, batch 

normalization, and dropout of 0.4 were used. 

The applied Adam optimizer was characterize 

with alearning rate of 0.001 and binary cross-

entropy loss. The second was a Convolutional 

Neural Network (CNN) which was to 

collaborate with time-lapse embryo image 

features. It consisted of three convolutional 

layers with 32, 64, and 128 filters followed by 

max-pooling and dense layers each. The third 

was a CNN + LSTM hybrid network with 

temporal embryo image features and static 

male and female parameters. The LSTM 

layers were found to capture the sequential 

nature of embryo cell-division times well. 
 

2.2.1 Training Strategy 
 

The data were divided into training, 

validation, and test subsets at a ratio of 70%, 

15%, and 15% respectively through stratified 

sampling to ensure proportions of outcomes. 

Overfitting was stalled while convergene was 

enhanced through early stopping and learning 

rate decay. Hyperparameter search was 

performed through Bayesian optimization 

within the Optuna framework. The whole 

manuscript was keyed in the Times font, and 

the right margins were justified for even 

alignment. 
 

2.3 Performance Metrics 
 

Performance of models was evaluated with 

several standard metrics. Accuracy assessed 

total correctness of predictions as a ratio, 

while precision computed the ratio of true 

positives  

out of predicted positives. Recall, or 

sensitivity, computed the ratio of true 

positives out of all actual positives. The F1-

score computed the harmonic mean of 

precision and recall. ROC-AUC (Receiver 

Operating Characteristic – Area Under 

Curve) was used to evaluate the model's 

discriminative power for different threshold 

levels. The Brier score was used to compute 

the model's probabilistic calibration of the 

predictions. A confusion matrix was used to 

get a fine grained split of true positives, false 

positives, true negatives, and false negatives. 

Finally, a 5 × stratified 10-fold cross-

validation approach was used to ensure the 

strength and consistency of the model 

performance. 

2.0 Results and Discussion  

2.1 Results 

2..1.1 Overall Prediction Accuracy 
 

The predictive performance of the four deep 

learning models on the held-out test set 

($\text{n}=1,112$ IVF cycles) is 

summarized in Table 1. [Table 1. Predictive 

Performance of Deep Learning Pipelines on 

the Held-Out Test Set ( n=1,112 cycles) will 

be inserted here]. The Hybrid CNN + LSTM 

– Combined model achieved the highest 

performance across all metrics, with an 

Accuracy of 0.887 and an AUROC of 0.918. 

The classification accuracy across all models 

is visualized in Fig. 1. The bar chart clearly 

illustrates the incremental gain in 

performance as the complexity of the input 

data and model architecture increases, with 

the Hybrid model achieving the highest 

accuracy, followed closely by the DNN-

Combined model. The DNN-Female model 

performs noticeably better than the DNN-

Male model. 

[ 



Journal of Natural and Artificial Scientific Systems, 2025, 12(6): 33-41 36 

   

Table 1. Predictive Performance of Deep Learning Pipelines on the Held-Out Test Set (n =1,112$ 

cycles 
 

Model / Input Block Accuracy Precision Recall F1-

Score 

AUROC Brier 

Score 

DNN – Male-only 0.802 0.788 0.744 0.765 0.861 0.167 

DNN – Female-only 0.846 0.831 0.812 0.821 0.884 0.151 

DNN – Combined 0.873 0.864 0.842 0.853 0.912 0.139 

Hybrid CNN + LSTM – 

Combined 

0.887 0.872 0.856 0.864 0.918 0.134 

 

2.1.2 Comparison: Male vs. Female Fertility 

Factors 

The feature importance analysis, based on SHAP 

values, is presented in Table 2, detailing the top 

contributing factors from both the female and 

male input blocks. The female factor, Age (mean  

SHAP value: 0.176), and the male factor, Strict 

morphology (mean SHAP value: 0.134), were 

identified as the most impactful features within 

their respective groups. 

 
Fig 1: Classification Accuracy Across Models 

 

Table 2. Top Contributing Features Based on SHAP Global Values 

 

Rank Female Factor Mean SHAP 

Value 

Rank Male Factor Mean SHAP 

Value 

1 Age (yrs) 0.176 1 Strict morphology (%) 0.134 

2 Endometrial thickness 

(mm) 

0.152 2 Progressive motility (%) 0.118 

3 AMH ($\text{ng}\ 

\text{mL}^{-1}$) 

0.128 3 DNA-fragmentation 

index (%) 

0.095 

4 Oocyte quality score 0.111 4 Total motile count 

($\text{10}^6$) 

0.083 

5 Blastocyst ICM grade 0.097 5 Abstinence period (days) 0.071 

 

2..1.3 Model Robustness and Classification 
 

The classification results of the best-performing 

model, Hybrid CNN + LSTM – Combined, 
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across five distinct outcome categories (A-E), are 

shown in the Confusion Matrix in Fig. 2. [The 

high values along the main diagonal (e.g.,  

 
 

112 for A, 128 for B, 97 for C, 110 for D, and 103 

for E) confirm the model's strong discriminatory 

power, while the small off-diagonal values 

indicate a low rate of misclassification between 

the different outcome classes. 

 
Fig 2: Confusion Matrix (CNN + LSTM) 

 

2.1.4 Predictive Performance Across Model 

Architectures 
 

The predictive performance of the three Deep 

Learning pipelines—assessing the impact of data 

input block and model architecture is presented in 

Table 3.  
 
 

 

 

 

The Hybrid CNN + LSTM – Combined model 

consistently achieved the highest scores across all 

standard classification and discrimination 

metrics. 

 

Table 3. Predictive Performance of Three Deep Learning Pipelines on the Held-Out Test Set 

(n=1,112 cycles) 

 

Model / Input Block Accuracy Precision Recall F1-

Score 

AUROC Brier 

Score 

DNN – Male-only 0.802 0.788 0.744 0.765 0.861 0.167 

DNN – Female-only 0.846 0.831 0.812 0.821 0.884 0.151 

DNN – Combined 0.873 0.864 0.842 0.853 0.912 0.139 

Hybrid CNN + LSTM – 

Combined 

0.887 0.872 0.856 0.864 0.918 0.134 

The results clearly establish a hierarchy of 

predictive power, directly correlating with the 

completeness of the input data and the 

complexity of the model architecture. There is a 

pronounced increase in performance when 

moving from single-gender factor inputs to 

combined inputs. For instance, the standard DNN 

– Combined model (Accuracy=0.873, 

AUROC=0.912) significantly outperformed the 

single-factor models (e.g., DNN – Female-only: 

Accuracy=0.846, AUROC=0.884). This 

AUROC gain of 0.028 demonstrates the necessity 

of integrating male fertility parameters to 

maximize prognostic accuracy. Consistent with 
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existing biological evidence, the DNN – Female-

only model (Accuracy=0.846, AUROC=0.884) 

substantially outperformed the DNN – Male-only 

model (Accuracy=0.802, AUROC=0.861), 

showing a ≈4.4 pp advantage in accuracy and a 

≈2.3 pp advantage in AUROC. This confirms that 

female factors remain the dominant predictive 

block. The most advanced architecture, Hybrid 

CNN + LSTM – Combined, yielded the best 

overall performance (Accuracy=0.887, 

AUROC=0.918, Brier Score=0.134). The 

incremental gain over the simpler DNN – 

Combined model (ΔAccuracy=0.014, 

ΔAUROC=0.006) suggests that the hybrid 

approach is slightly better at capturing subtle, 

non-linear dependencies in the combined feature 

set. The resulting low Brier Score confirms the 

superior calibration and reliability of the Hybrid 

model's probability predictions. 
 

3.1.5 Classification Accuracy Across Models 
 

Table 4 presents a concise overview of the 

classification accuracy for each of the developed 

models. The Hybrid CNN + LSTM – Combined 

model achieved the highest accuracy at 88.7%, 

followed closely by the DNN – Combined model 

at $\text{87.3}\%$. The DNN – Female-only 

model showed an accuracy of 84.6 %, while the 

DNN – Male-only model had the lowest accuracy 

at $\text{80.2}\%$. This trend underscores the 

superior predictive power of models utilizing 

combined male and female fertility factors, and 

the marginal benefit of the more complex hybrid 

architecture. 

 

Table 4. Classification Accuracy Across Models 
 

Model / Input Block Accuracy (%) 

DNN – Male-only 80.2 

DNN – Female-only 84.6 

DNN – Combined 87.3 

Hybrid CNN + LSTM – Combined 88.7 

 

3.2 Discussion  
 

The primary finding of this study is the 

significant enhancement in prognostic accuracy 

achieved by models that incorporate the 

combined fertility parameters of both male and 

female partners. The Hybrid CNN + LSTM – 

Combined model yielded the highest predictive 

performance (Accuracy=0.887, AUROC=0.918, 

Brier Score=0.134), confirming that the 

combined approach is necessary to maximize 

prognostic accuracy. 

The results clearly establish a hierarchy of 

predictive power, directly correlating with the 

completeness of the input data. The standard 

DNN – Combined model (Accuracy=0.873, 

AUROC=0.912) significantly outperformed the 

single-factor models, demonstrating that the 

integration of male fertility parameters is 

necessary to resolve predictive uncertainty. 

Consistent with existing reproductive biology 

literature, the DNN – Female-only model 

(Accuracy=0.846, AUROC=0.884) substantially 

outperformed the DNN – Male-only model 

(Accuracy=0.802, AUROC=0.861), showing a 

$\approx4.4\ \text{pp}$ advantage in accuracy 

and a $\approx2.3\ \text{pp}$ advantage in 

AUROC. This aligns with evidence showing that 

female factors, particularly Age, Endometrial 

thickness, and AMH levels (Table 2), which 

relate to oocyte quality and uterine receptivity, 

are the central determinants of implantation 

success (Esteves et al., 2021). 

However, the necessity of the combined input is 

confirmed by the performance metrics and 

feature importance. The male factors contributed 

significantly (approximately $\text{31}\%$ of 

explained variance) in the combined models. The 

emergence of Sperm morphology, Progressive 

motility, and the DNA-fragmentation index as 

critical predictors underscores the clinical 

relevance of comprehensive male evaluation. 

These findings are consistent with prior work by 
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Barragán et al. (2018), which linked sperm 

chromatin integrity to subsequent embryo 

development, reinforcing those male parameters 

are indispensable, particularly in cases of 

idiopathic infertility. The superior performance 

of the Hybrid CNN + LSTM architecture over the 

simpler DNN – Combined model (an incremental 

gain of AUROC =0.006 suggests that the hybrid 

approach is slightly better at capturing subtle, 

non-linear dependencies in the combined feature 

set. The resulting low Brier Score confirms the 

superior calibration and reliability of the Hybrid 

model's probability predictions. 

Table 4 succinctly summarizes the core finding 

regarding model accuracy. The observed trend, 

where accuracy systematically increases from 

single-factor (male-only, female-only) to 

combined-factor models, and then slightly 

improves with a more complex architecture 

(Hybrid CNN + LSTM), provides strong 

evidence for several key points. Firstly, the 

performance gap between the DNN – Male-only 

(80.2\%) and DNN – Female-only (84.6%) 

models highlights the dominant role of female 

fertility factors in IVF success prediction, 

aligning with existing biological understanding 

that places significant emphasis on oocyte 

quality and maternal uterine environment. 

However, the subsequent, more substantial 

increase in accuracy when combining male and 

female data (from84.6% for DNN – Female-only 

to 87.3% for DNN – Combined) underscores the 

indispensable contribution of male factors. This 

jump of 27% in accuracy demonstrates that male 

parameters provide unique and critical 

information that significantly enhances the 

overall predictive power, even if female factors 

individually appear to be stronger predictors. 

Finally, the marginal but notable improvement 

observed with the Hybrid CNN + LSTM – 

Combined model (88.7%) over the simpler DNN 

– Combined model suggests that advanced deep 

learning architectures can capture more intricate, 

non-linear relationships within the integrated 

dataset, leading to subtle but valuable gains in 

prediction accuracy. This systematic increase in 

accuracy across the models validates the multi-

factorial nature of IVF success and reinforces the 

technical advantages of comprehensive data 

integration and sophisticated model design. 
 

3.2.1 Implications for Clinical Practice 
 

The deployment of deep learning (DL) models in 

assisted reproductive technology (ART), 

especially in in vitro fertilization (IVF), presents 

a transformative opportunity for clinical 

workflows. Our findings demonstrate that AI 

systems can effectively integrate heterogeneous 

fertility data to predict IVF outcomes with high 

accuracy and reliability. This supports the 

integration of such models as Clinical Decision 

Support Tools (CDSTs), allowing embryologists 

and fertility specialists to stratify patient risk for 

implantation failure or cycle cancellation. These 

tools can optimize treatment protocols by 

tailoring stimulation, insemination, and embryo 

transfer strategies based on the individual’s 

combined fertility profile. Furthermore, they can 

reduce subjectivity in embryo selection and 

partner fertility assessment, supplementing 

expert judgment with consistent, data-driven 

insights. This technology can also enhance 

counseling by providing probabilistic outcome 

forecasts, enabling more informed consent and 

better emotional preparedness for patients 

undergoing IVF. 

3.2.2 Generalizability and Dataset Bias 
 

While our results are highly promising for the 

development of prediction models, 

generalizability is constrained by potential 

dataset biases. The geographic and demographic 

concentration of the training data, primarily 

originating from a small number of fertility 

centers in Europe and North America, limits the 

direct applicability of the model to other 

populations, including African and Asian 

cohorts. Furthermore, the underrepresentation of 

certain subfertility phenotypes such as polycystic 

ovary syndrome (PCOS), varicocele, or 

unexplained infertility may skew predictions 

when the model is applied to a more diverse 

clinical population. The absence of ethnic and 

socioeconomic diversity in training data also 

poses a risk of introducing algorithmic bias, 

potentially affecting fairness and accuracy across 

different subpopulations. Efforts to develop 
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global, federated IVF datasets and validate 

models across multi-ethnic cohorts are necessary 

steps for responsible and ethical deployment. 
 

3.2.3 Limitations and Future Work 
 

Despite achieving state-of-the-art performance, 

several limitations must be acknowledged. The 

dataset size (n=1,112 IVF cycles), although 

statistically adequate, may not fully capture all 

clinical variations; thus, a larger, multicenter 

dataset would enhance model robustness. Our 

current model predicted implantation success but 

lacked longitudinal outcome data, failing to track 

pregnancy progression or live birth rates. Future 

models should incorporate these critical 

longitudinal outcomes, including early 

miscarriage and neonatal health. Regarding the 

model itself, while SHAP values provided some 

transparency, the black-box nature of deep 

learning still poses challenges, necessitating 

future work to explore explainable AI (XAI) 

techniques such as attention mechanisms or 

counterfactual reasoning. Finally, translating 

these AI models into real-time clinical tools will 

require addressing challenges in regulatory 

validation, user interface design, and seamless 

integration into Electronic Health Record (EHR) 

systems. Future research should also explore 

multi-modal learning, combining imaging (e.g., 

embryo morphology), genomics (e.g., PGT-A), 

and clinical data for more holistic fertility 

prediction. 

4.0 Conclusion 

This study demonstrates the feasibility and 

clinical utility of deep learning (DL) models in 

predicting IVF treatment outcomes using a 

combination of male and female fertility 

parameters. Our findings showed that while 

female factors such as age, endometrial 

thickness, and AMH levels were dominant 

predictors, male factors—including sperm 

morphology and DNA fragmentation—also 

made substantial contributions to predictive 

performance. Importantly, models that 

incorporated both partners’ data significantly 

outperformed single-gender input pipelines, 

reinforcing the need for a couple-focused 

approach in fertility assessment and treatment 

planning. From a clinical standpoint, these 

models can assist reproductive specialists by 

offering personalized, data-driven predictions to 

guide interventions, optimize treatment plans, 

and support patient counseling. They also offer 

potential for reducing subjective biases in 

embryo selection and partner evaluation, 

ensuring consistency in clinical decisions.  
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