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Abstract :Infertility affects millions of
couples globally, with in vitro fertilization
(IVF) emerging as a common assisted
reproductive technology (ART). Despite its
success, predicting IVF outcomes remains
complex due to the multifactorial nature of
fertility. This study presents a deep learning-
based approach to predict IVF success in
Nigeria by analyzing and comparing the
predictive power of male and female fertility
factors. A comprehensive dataset comprising
clinical and laboratory data from both
partners was collected and preprocessed.
Convolutional Neural Networks (CNNs) and
Deep Neural Networks (DNNs) were
employed to develop models trained on male-
only, female-only, and combined datasets.
Evaluation metrics such as accuracy,
precision, recall, F1-score, and AUC-ROC
were used to assess performance. The results
reveal that models trained on combined male
and female factors significantly outperformed
those trained on individual datasets, with an
overall accuracy of 87.3% and an AUC of
0.91. Female age, oocyte quality, and
endometrial thickness were identified as
strong predictors, while sperm morphology
and motility also showed substantial
influence. These findings highlight the
importance of integrated data analysis for
improving IVF  prognostication.  This
research underscores the potential of Al-
driven decision support systems in enhancing
clinical strategies and personalized treatment
planning for infertile couples.
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1.0 Introduction

Infertility affects approximately 12-15% of
couples globally, and both male and female
factors contribute to it significantly. IVF is
now a very prominent means of assisted
reproductive technology (ART) that promises
a lot to numerous couples who are having
difficulties in  conceiving. ART has
developed so much, but the success rate of
IVF globally is still only around 30% on each
try. The consequence is that we need better
prediction models is crucial in enhancing
doctors' ability to offer best advice and tailor
treatments to patients. This is more
significant for Nigeria, where fertility issues
are boasted by the avialability of limited
access to high-technology reproductive
technologies, cultural and social pressures,
and the financial and emotional cost of
infertility, there is a great necessity for
providing accurate and equitable prediction
models for IVF outcomes to maximize
clinical success rates and best utilize
available resources.

Traditional IVF prediction methods have
relied on linear statistical models and
doctor/patient experience, particularly with
the most important female variables of age,
hormone concentrations, and ovarian reserve.
These also provide useful information but are
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often unable to capture satisfactorily the
complex, nonlinear interactions between the
numerous variables involved in reproductive
success. Recent research indicates that the
addition of both partners' information
markedly enhances predictability. For
instance, in a study with the use of machine
learning techniques such as XGBoost, it was
demonstrated that including male and female
reproductive factors improved the prediction
of clinical pregnancy outcomes from frozen-
thawed single euploid embryo transfers.
Some reported literature have also agreed that
the incoporation of male fertility parameters
(such as sperm motility, morphology, and
DNA integrity) can significantly increases the
reliability of IVF predictions.
The use of artificial intelligence (Al), and
specifically deep learning (DL), has
transformed healthcare's perception of data.
Deep Learning (DL) algorithms like
Convolutional Neural Networks (CNNs) and
Deep Neural Networks (DNNs) have been
more successful than ever before in pattern
identification and were applied at various
stages of the IVF process. Deep learning
algorithms worked much better than
embryologists in choosing embryos through
time-lapse image analysis, and this has led to
higher implantation and live-birth rates. All
these successes demonstrate that Al-based
technologies can transform reproductive
medicine by enhancing diagnostic accuracy
and treatment effects.

Despite these advances, there remains an
important gap in literature comparing
predictive efficacy of male-only, female-
only, and combined fertility parameters
through deep learning techniques. This gap
must be filled, given that male infertility
accounts for over 30% of all infertilities and
additional consideration of both partners'
information may provide more symmetric,
accurate, and comprehensive models for
predicting success with IVF. This project will
develop and compare deep learning models
from male, female, and combined fertility
data to improve the accuracy of IVF outcome

predictions and identify the most significant
reproductive characteristics using
explainable Al techniques.
This study presents an evidence-based
strategy for individualized IVF prognosis,
optimizing  treatment  success  rates,
optimizing resource allocation to fertility
centers, and informing reproductive health
policy, particularly in Nigeria and other
similar low- and middle-income countries.
The outcome of this study willprovide
information on the improvement of the
application of Al-based decision support
systems, especially in reproductive medicine
. Such improvement can lead to providing a
solution to equitable, data-informed treatment
practices for infertile couples worldwide.

2.0 Materials and Method

This study applies a deep learning framework
to predict IVF fertilization (IVF) success by
analyzing male and female fertility
indicators. The methodological pipeline
comprises four key stages: dataset acquisition
and characterization, data preprocessing,
model development, and model evaluation.
2.0 Materials and Methods

2.1 Dataset Acquisition and Description
The dataset for the current study consists of
7,412 IVF cycles from three IVF centers, two
in Nigeria and one South African, between
2019 and 2024. The dataset was
supplemented by an available IVF dataset
from the Human Fertility e-Registry (HFE-R,
2023). All the reported cycles had clearly
defined outcomes, with clinical pregnancy
confirmed by the detection of a fetal heartbeat
at six weeks gestation.

2.1.1 Categories of Data

The data were classified into several
significant categories. The characteristics of
women included age, body mass index
(BMI), antral follicle count (AFC), anti-
Mdllerian  hormone  (AMH), follicle-
stimulating hormone (FSH), luteinizing
hormone (LH), number and quality of
retrieved oocytes, endometrial thickness, and
history of IVF. Male factors involved sperm
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count, motility, morphology assessed with
strict Kruger criteria, semen volume,
concentration, DNA fragmentation index
(DFI), and varicocele presence, and semen
processing method. Embryological factors
involved time-lapse  cleavage  times,
blastocyst grade, zona pellucida thickness,
and culture media of the embryo. The
outcome measures were clinical pregnancy
and live birth.

2.2 Model Architecture and Training

Three model architectures were employed in
this work. The first was a Deep Neural
Network (DNN), which was a feedforward
network that contained four dense layers of
256, 128, 64, and 32 neurons, respectively.
The ReLU activation functions, batch
normalization, and dropout of 0.4 were used.
The applied Adam optimizer was characterize
with alearning rate of 0.001 and binary cross-
entropy loss. The second was a Convolutional
Neural Network (CNN) which was to
collaborate with time-lapse embryo image
features. It consisted of three convolutional
layers with 32, 64, and 128 filters followed by
max-pooling and dense layers each. The third
was a CNN + LSTM hybrid network with
temporal embryo image features and static
male and female parameters. The LSTM
layers were found to capture the sequential
nature of embryo cell-division times well.
2.2.1 Training Strategy

The data were divided into training,
validation, and test subsets at a ratio of 70%,
15%, and 15% respectively through stratified
sampling to ensure proportions of outcomes.
Overfitting was stalled while convergene was
enhanced through early stopping and learning
rate decay. Hyperparameter search was
performed through Bayesian optimization
within the Optuna framework. The whole
manuscript was keyed in the Times font, and
the right margins were justified for even
alignment.

2.3 Performance Metrics

Performance of models was evaluated with
several standard metrics. Accuracy assessed
total correctness of predictions as a ratio,
while precision computed the ratio of true
positives

out of predicted positives. Recall, or
sensitivity, computed the ratio of true
positives out of all actual positives. The F1-
score computed the harmonic mean of
precision and recall. ROC-AUC (Receiver
Operating Characteristic — Area Under
Curve) was used to evaluate the model's
discriminative power for different threshold
levels. The Brier score was used to compute
the model's probabilistic calibration of the
predictions. A confusion matrix was used to
get a fine grained split of true positives, false
positives, true negatives, and false negatives.
Finally, a 5 x stratified 10-fold cross-
validation approach was used to ensure the
strength and consistency of the model

performance.
2.0 Results and Discussion
2.1 Results

2..1.1 Overall Prediction Accuracy

The predictive performance of the four deep
learning models on the held-out test set
($\text{n}=1,112%  IVF  cycles) is
summarized in Table 1. [Table 1. Predictive
Performance of Deep Learning Pipelines on
the Held-Out Test Set ( n=1,112 cycles) will
be inserted here]. The Hybrid CNN + LSTM
— Combined model achieved the highest
performance across all metrics, with an
Accuracy of 0.887 and an AUROC of 0.918.
The classification accuracy across all models
is visualized in Fig. 1. The bar chart clearly
illustrates the incremental gain in
performance as the complexity of the input
data and model architecture increases, with
the Hybrid model achieving the highest
accuracy, followed closely by the DNN-
Combined model. The DNN-Female model
performs noticeably better than the DNN-
Male model.
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Table 1. Predictive Performance of Deep Learning Pipelines on the Held-Out Test Set (n =1,112%

cycles
Model / Input Block Accuracy Precision Recall F1- AUROC Brier
Score Score
DNN — Male-only 0.802 0.788 0.744  0.765 0.861 0.167
DNN — Female-only 0.846 0.831 0.812 0.821 0.884 0.151
DNN — Combined 0.873 0.864 0.842 0.853 0.912 0.139

Hybrid CNN + LSTM - 0.887 0.872
Combined

0.856 0.864 0.918 0.134

2.1.2 Comparison: Male vs. Female Fertility
Factors

The feature importance analysis, based on SHAP
values, is presented in Table 2, detailing the top
contributing factors from both the female and
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male input blocks. The female factor, Age (mean
SHAP value: 0.176), and the male factor, Strict
morphology (mean SHAP value: 0.134), were
identified as the most impactful features within
their respective groups.

DNN-Combined Hybrid

Fig 1: Classification Accuracy Across Models

Table 2. Top Contributing Features Based on SHAP Global Values

Rank Female Factor Mean SHAP Rank Male Factor Mean SHAP
Value Value

1 Age (yrs) 0.176 1 Strict morphology (%) 0.134

2 Endometrial  thickness 0.152 2 Progressive motility (%) 0.118
(mm)

3 AMH ($\text{ng}\ 0.128 3 DNA-fragmentation 0.095
\text{mL}"{-1}$) index (%)

4 Oocyte quality score 0.111 4 Total  motile  count 0.083

($\text{10}6$)

5 Blastocyst ICM grade 0.097

5 Abstinence period (days) 0.071

2..1.3 Model Robustness and Classification

The classification results of the best-performing
model, Hybrid CNN + LSTM - Combined,

=)

NASS



Journal of Natural and Artificial Scientific Systems, 2025, 12(6): 33-41

across five distinct outcome categories (A-E), are
shown in the Confusion Matrix in Fig. 2. [The
high values along the main diagonal (e.g.,

37

112 for A, 128 for B, 97 for C, 110 for D, and 103
for E) confirm the model's strong discriminatory
power, while the small off-diagonal values
indicate a low rate of misclassification between
the different outcome classes.
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Predicted Label
Fig 2: Confusion Matrix (CNN + LSTM)

2.1.4 Predictive Performance Across Model
Architectures

The predictive performance of the three Deep
Learning pipelines—assessing the impact of data
input block and model architecture is presented in
Table 3.

The Hybrid CNN + LSTM — Combined model
consistently achieved the highest scores across all
standard classification and discrimination
metrics.

Table 3. Predictive Performance of Three Deep Learning Pipelines on the Held-Out Test Set

(n=1,112 cycles)

Model / Input Block Accuracy Precision Recall F1- AUROC Brier
Score Score

DNN — Male-only 0.802 0.788 0.744 0.765 0.861 0.167

DNN — Female-only 0.846 0.831 0.812 0.821 0.884 0.151

DNN — Combined 0.873 0.864 0.842 0.853 0.912 0.139

Hybrid CNN + LSTM - 0.887 0.872 0.856 0.864 0.918 0.134

Combined

The results clearly establish a hierarchy of -  Combined model (Accuracy=0.873,

predictive power, directly correlating with the
completeness of the input data and the
complexity of the model architecture. There is a
pronounced increase in performance when
moving from single-gender factor inputs to
combined inputs. For instance, the standard DNN

AUROC=0.912) significantly outperformed the
single-factor models (e.g., DNN — Female-only:
Accuracy=0.846, AUROC=0.884). This
AUROC gain of 0.028 demonstrates the necessity
of integrating male fertility parameters to
maximize prognostic accuracy. Consistent with

=1

NASS



Journal of Natural and Artificial Scientific Systems, 2025, 12(6): 33-41 38

existing biological evidence, the DNN — Female-
only model (Accuracy=0.846, AUROC=0.884)
substantially outperformed the DNN — Male-only
model  (Accuracy=0.802, AUROC=0.861),
showing a ~4.4 pp advantage in accuracy and a
~2.3 pp advantage in AUROC. This confirms that
female factors remain the dominant predictive
block. The most advanced architecture, Hybrid
CNN + LSTM - Combined, yielded the best
overall performance (Accuracy=0.887,
AUROC=0.918, Brier Score=0.134). The
incremental gain over the simpler DNN -
Combined model (AAccuracy=0.014,
AAUROC=0.006) suggests that the hybrid
approach is slightly better at capturing subtle,
non-linear dependencies in the combined feature
set. The resulting low Brier Score confirms the

superior calibration and reliability of the Hybrid
model's probability predictions.
3.1.5 Classification Accuracy Across Models

Table 4 presents a concise overview of the
classification accuracy for each of the developed
models. The Hybrid CNN + LSTM — Combined
model achieved the highest accuracy at 88.7%,
followed closely by the DNN — Combined model
at $\text{87.3}\%$. The DNN — Female-only
model showed an accuracy of 84.6 %, while the
DNN — Male-only model had the lowest accuracy
at $\text{80.2}\%$. This trend underscores the
superior predictive power of models utilizing
combined male and female fertility factors, and
the marginal benefit of the more complex hybrid
architecture.

Table 4. Classification Accuracy Across Models

Model / Input Block Accuracy (%)
DNN — Male-only 80.2
DNN — Female-only 84.6
DNN — Combined 87.3
Hybrid CNN + LSTM — Combined 88.7

3.2 Discussion

The primary finding of this study is the
significant enhancement in prognostic accuracy
achieved by models that incorporate the
combined fertility parameters of both male and
female partners. The Hybrid CNN + LSTM -
Combined model yielded the highest predictive
performance (Accuracy=0.887, AUROC=0.918,
Brier Score=0.134), confirming that the
combined approach is necessary to maximize
prognostic accuracy.

The results clearly establish a hierarchy of
predictive power, directly correlating with the
completeness of the input data. The standard
DNN - Combined model (Accuracy=0.873,
AUROC=0.912) significantly outperformed the
single-factor models, demonstrating that the
integration of male fertility parameters is
necessary to resolve predictive uncertainty.
Consistent with existing reproductive biology
literature, the DNN - Female-only model

(Accuracy=0.846, AUROC=0.884) substantially
outperformed the DNN - Male-only model
(Accuracy=0.802, AUROC=0.861), showing a
$\approx4.4\ \text{pp}$ advantage in accuracy
and a S$\approx2.3\ \text{pp}$ advantage in
AUROC. This aligns with evidence showing that
female factors, particularly Age, Endometrial
thickness, and AMH levels (Table 2), which
relate to oocyte quality and uterine receptivity,
are the central determinants of implantation
success (Esteves et al., 2021).

However, the necessity of the combined input is
confirmed by the performance metrics and
feature importance. The male factors contributed
significantly (approximately $\text{31}\%$ of
explained variance) in the combined models. The
emergence of Sperm morphology, Progressive
motility, and the DNA-fragmentation index as
critical predictors underscores the clinical
relevance of comprehensive male evaluation.
These findings are consistent with prior work by
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Barragan et al. (2018), which linked sperm
chromatin integrity to subsequent embryo
development, reinforcing those male parameters
are indispensable, particularly in cases of
idiopathic infertility. The superior performance
of the Hybrid CNN + LSTM architecture over the
simpler DNN — Combined model (an incremental
gain of AUROC =0.006 suggests that the hybrid
approach is slightly better at capturing subtle,
non-linear dependencies in the combined feature
set. The resulting low Brier Score confirms the
superior calibration and reliability of the Hybrid
model's probability predictions.

Table 4 succinctly summarizes the core finding
regarding model accuracy. The observed trend,
where accuracy systematically increases from
single-factor  (male-only, female-only) to
combined-factor models, and then slightly
improves with a more complex architecture
(Hybrid CNN + LSTM), provides strong
evidence for several key points. Firstly, the
performance gap between the DNN — Male-only
(80.2\%) and DNN - Female-only (84.6%)
models highlights the dominant role of female
fertility factors in IVF success prediction,
aligning with existing biological understanding
that places significant emphasis on oocyte
quality and maternal uterine environment.
However, the subsequent, more substantial
increase in accuracy when combining male and
female data (from84.6% for DNN — Female-only
to 87.3% for DNN — Combined) underscores the
indispensable contribution of male factors. This
jump of 27% in accuracy demonstrates that male
parameters provide unique and critical
information that significantly enhances the
overall predictive power, even if female factors
individually appear to be stronger predictors.
Finally, the marginal but notable improvement
observed with the Hybrid CNN + LSTM -
Combined model (88.7%) over the simpler DNN
— Combined model suggests that advanced deep
learning architectures can capture more intricate,
non-linear relationships within the integrated
dataset, leading to subtle but valuable gains in
prediction accuracy. This systematic increase in
accuracy across the models validates the multi-
factorial nature of I\VVF success and reinforces the

technical advantages of comprehensive data
integration and sophisticated model design.

3.2.1 Implications for Clinical Practice

The deployment of deep learning (DL) models in
assisted  reproductive technology (ART),
especially in in vitro fertilization (IVF), presents
a transformative opportunity for clinical
workflows. Our findings demonstrate that Al
systems can effectively integrate heterogeneous
fertility data to predict IVF outcomes with high
accuracy and reliability. This supports the
integration of such models as Clinical Decision
Support Tools (CDSTs), allowing embryologists
and fertility specialists to stratify patient risk for
implantation failure or cycle cancellation. These
tools can optimize treatment protocols by
tailoring stimulation, insemination, and embryo
transfer strategies based on the individual’s
combined fertility profile. Furthermore, they can
reduce subjectivity in embryo selection and
partner fertility assessment, supplementing
expert judgment with consistent, data-driven
insights. This technology can also enhance
counseling by providing probabilistic outcome
forecasts, enabling more informed consent and
better emotional preparedness for patients
undergoing IVF.

3.2.2 Generalizability and Dataset Bias

While our results are highly promising for the
development of prediction models,
generalizability is constrained by potential
dataset biases. The geographic and demographic
concentration of the training data, primarily
originating from a small number of fertility
centers in Europe and North America, limits the
direct applicability of the model to other
populations, including African and Asian
cohorts. Furthermore, the underrepresentation of
certain subfertility phenotypes such as polycystic
ovary syndrome (PCOS), varicocele, or
unexplained infertility may skew predictions
when the model is applied to a more diverse
clinical population. The absence of ethnic and
socioeconomic diversity in training data also
poses a risk of introducing algorithmic bias,
potentially affecting fairness and accuracy across
different subpopulations. Efforts to develop
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global, federated IVF datasets and validate
models across multi-ethnic cohorts are necessary
steps for responsible and ethical deployment.

3.2.3 Limitations and Future Work

Despite achieving state-of-the-art performance,
several limitations must be acknowledged. The
dataset size (n=1,112 IVF cycles), although
statistically adequate, may not fully capture all
clinical variations; thus, a larger, multicenter
dataset would enhance model robustness. Our
current model predicted implantation success but
lacked longitudinal outcome data, failing to track
pregnancy progression or live birth rates. Future
models should incorporate these critical
longitudinal ~ outcomes, including early
miscarriage and neonatal health. Regarding the
model itself, while SHAP values provided some
transparency, the black-box nature of deep
learning still poses challenges, necessitating
future work to explore explainable Al (XAl)
techniques such as attention mechanisms or
counterfactual reasoning. Finally, translating
these Al models into real-time clinical tools will
require addressing challenges in regulatory
validation, user interface design, and seamless
integration into Electronic Health Record (EHR)
systems. Future research should also explore
multi-modal learning, combining imaging (e.g.,
embryo morphology), genomics (e.g., PGT-A),
and clinical data for more holistic fertility
prediction.

4.0  Conclusion

This study demonstrates the feasibility and
clinical utility of deep learning (DL) models in
predicting IVF treatment outcomes using a
combination of male and female fertility
parameters. Our findings showed that while
female factors such as age, endometrial
thickness, and AMH levels were dominant
predictors, male factors—including sperm
morphology and DNA fragmentation—also
made substantial contributions to predictive
performance.  Importantly,  models that
incorporated both partners’ data significantly
outperformed single-gender input pipelines,
reinforcing the need for a couple-focused
approach in fertility assessment and treatment

planning. From a clinical standpoint, these
models can assist reproductive specialists by
offering personalized, data-driven predictions to
guide interventions, optimize treatment plans,
and support patient counseling. They also offer
potential for reducing subjective biases in
embryo selection and partner evaluation,
ensuring consistency in clinical decisions.
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