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Abstract: In order to solve the radial 

deformation of incompressible Mooney-Rivlin 

isotropic synthetic rubber-like materials under 

various pressure regimes, this study compares 

the collocation and firing numerical 

approaches. Using the Mooney-Rivlin 

constitutive law to describe the complicated 

material response, the study tackles the 

nonlinear boundary value problems resulting 

from thick-walled cylinders exposed to 

moderate (0.1 MPa), high (1 MPa), and 

extremely high (10 MPa) internal pressures. 

The study measures the accuracy, 

convergence, and robustness of each approach 

across the pressure ranges under investigation 

by utilizing the collocation method, which is 

renowned for its effectiveness and stability with 

stiff nonlinear equations, and the shooting 

method, which converts the boundary value 

problem into an initial value framework. The 

collocation approach offers quicker and more 

dependable convergence, particularly at 

higher pressure regimes, despite the fact that 

both approaches can precisely resolve massive 

deformations and associated stress 

distributions, as shown by numerical 

simulations. The findings provide information 

for failure analysis and pressurized 

hyperelastic structure design optimization by 

highlighting the sensitivity of radial 

deformation and stress concentration close to 

the inner wall to both the applied pressure and 

material model parameters. The study and 

design of pipelines, pressure vessels, 

biomedical balloons, and other rubber-like 

components that are subjected to high internal 

loads can all benefit from these discoveries. 
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1.0 Introduction 

The safe and effective design of pressurized 

engineered structures, biomedical devices, and 

elastomeric components depends on the precise 

prediction of radial deformation and internal 

stress distributions in incompressible, 

isotropic, synthetic rubber-like materials. The 

standard for describing the intricate, nonlinear 

elastic behaviour of such materials under finite 

strains is Mooney-Rivlin constitutive models, 

which form a class of hyperelastic theories 

(Huri et al., 2024; Melly et al., 2021; 

Marckmann & Verron, 2006). By taking into 

consideration the substantial nonlinearities 

present in rubber-like materials, these models 

allow for a reliable simulation of how they 

would react to external stresses or internal 

inflation (Anssari-Benam, 2022; Seng et al., 

2015). 

Nonlinear boundary value problems, which are 

frequently expressed as second-order ordinary 

differential equations (ODEs) that cannot be 

solved analytically except for the most basic 

material laws or geometries, are usually the 

result of solving the governing equilibrium 

equations for radial deformation in pressure-

loaded thick-walled cylinders or spheres 

(Gupta, 2021; Pourjafar et al., 2016). As a 

result, numerical techniques have become more 

popular. The shooting method and collocation-
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based algorithms have both emerged as 

effective approaches for solving these 

boundary value issues in practice (Adewumi & 

Ogunlaran, 2016; El-gamel, 2023). Research 

on the relative benefits, rates of convergence, 

and accuracy of these methods is still ongoing, 

particularly when used for highly nonlinear 

instances that are typical of Mooney-Rivlin 

materials (Zisis & Corvis, 2015; Vadala-Roth 

et al., 2020). 

Validating and benchmarking numerical 

strategies for hyperelasticity is crucial, 

according to recent studies. This includes 

comparing stress and displacement predictions 

and evaluating the effects of different internal 

pressures across multiple orders of magnitude 

(Zisis & Corvis, 2015; Seng et al., 2015; 

Asemani et al., 2021). Moreover, complicated 

nonlinear, multi-point boundary value 

problems in elastomers have been shown to be 

more accurately solved by integrating 

sophisticated collocation techniques, such as 

Chebyshev or Genocchi polynomial-based 

schemes (Adewumi & Ogunlaran, 2016; El-

gamel, 2023). The shooting method, on the 

other hand, transforms the boundary value 

formulation into a sequence of initial value 

problems by modifying the initial derivative to 

satisfy boundary conditions. It is frequently 

used in conjunction with iterative schemes such 

as the secant or Newton-Raphson algorithms 

(Arxiv, 2024; Ramena & Basak, 2023). 

Despite significant advances in theoretical, 

computational, and experimental aspects of 

hyperelasticity, a comprehensive comparative 

analysis of shooting and collocation strategies 

for the radial deformation of Mooney-Rivlin 

models under varying pressure regimes 

remains limited. This work aims to fill this gap 

by systematically investigating both solution 

methods for the radial response of thick-

walled, incompressible, Mooney-Rivlin solids 

subject to moderate, high, and very high 

internal pressures. 

Also, this work serves as an extension of the 

nonlinear boundary value problem of a 

spherical body composed of Mooney–Rivlin 

isotropic hyperelastic material under internal 

pressure is analyzed by Egbuhuzor (2024) 

using only the collocation method. The 

governing differential equation, which 

incorporates material constants, is obtained by 

integrating the Mooney–Rivlin constitutive 

model with equilibrium equations in spherical 

coordinates. The undeformed radius and 

pressure effects are used to express radial 

deformation 𝑟 (𝑅). Accurate numerical 

solutions under pertinent boundary conditions 

are made possible by the collocation scheme, 

which discretizes the problem domain. With 

stress components taken from calculated 

deformation fields, the results demonstrate a 

substantial dependence of deformation on 

pressure and material parameters. The method 

shows effectiveness, dependability, and 

convergence, providing useful information for 

elastomer optimization and structural design. 

2.0 Materials and Methods 

2.1  Cylindrical Coordinates 

Considering the deformation of a spherical 

hollow sphere that takes the point with the 

spherical polar coordinates ),,( ZR   in the 

undeformed region to the point ),,( zr   in the 

deformed region such that;  

𝑟 = 𝑟(𝑅)        𝑎 ≤ 𝑅 ≤ 𝑏                      (1) 

𝜃 = 𝛩              0 ≤ 𝛩 ≤ 2𝜋            (2) 

𝑧 = 𝑍𝛾             0 ≤ 𝑍 ≤  𝑙                 (3) 

 
0>

dR

dr

 
)(Rr  is a continuously differentiable function 

to be determined  and the deformation gradient 

tensor, F  is given by; 
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Derivation of the boundary value problem 

Recall that 𝜆1 =
𝑑𝑟

𝑑𝑅
 , 𝜆2 = 𝜆3 =

𝑟

𝑅
 ,  

,)()()(=C= 22

1 ++
R

r

dR

dr
trI ,)()()()()(=])C()C[(

2

1
= 22
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22
2222
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dr
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dr

R

r
trtrI 
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 𝑊 = 𝐶10(𝜆1
2 + 𝜆2

2 + 𝜆3
2 − 3) + 𝐶01(𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆3

2𝜆1
2 − 3)                                                         

(4) 

Where 𝐶10 = −2.9481 ∗ 105𝑃𝑎 and 𝐶01 = 5.2082 ∗ 105𝑃𝑎 

Applying the stress condition for true stress from Cauchy elasticity, according to Horgan(1986), 

we have; 

=
𝜆𝑖

𝜆1𝜆2𝜆3

𝜕𝑊

𝜕𝜆𝑖
    𝑓𝑜𝑟 𝑖 =  1,2,3                                    (5) 

𝜎11 =
1

𝜆2𝜆3

𝜕𝑊

𝜕𝜆1
= 𝐶10 (

2𝜆1

𝜆2𝜆3
) + 𝐶01(

2𝜆1𝜆2
2

𝜆2𝜆3
+

2𝜆1𝜆3
2

𝜆2𝜆3
)                               (6) 

= 𝐶10 (
2𝜆1

𝜆2𝜆3
) + 𝐶01(

2𝜆1𝜆2

𝜆3
+

2𝜆1𝜆3

𝜆2
)  

𝜎𝑟𝑟 = 𝜎11 = 2𝐶10
2𝑟′𝑅

𝑟𝛾
+ 2𝐶01 (

2𝑟′𝑟

𝛾𝑅
+

2𝑟′𝑅𝛾

𝑟
)                                  (7) 

𝜎𝜃𝜃 = 𝜎22 =
1

𝜆1𝜆3

𝜕𝑊

𝜕𝜆2
= 𝐶10 (

2𝜆2

𝜆1𝜆3
) + 𝐶01(

2𝜆2𝜆1
2

𝜆1𝜆3
+

2𝜆2𝜆3
2

𝜆1𝜆3
)                              (8) 

= 2𝐶10 (
𝜆2

𝜆1𝜆3
) + 2𝐶01(

𝜆1𝜆2

𝜆3
+

𝜆2𝜆3

𝜆1
)  

𝜎𝜃𝜃 = 𝜎𝜑𝜑 = 𝜎33 = 𝜎22 = 2𝐶10
𝑟

𝑟′𝑅𝛾
+ 2𝐶01(

2𝑟′𝑟

𝛾𝑅
+

2𝑟𝛾

𝑅𝑟′
)                               (9) 

   
0====== rrrr  

                                                                     (10)   
Equilibrium Equation in Cylindrical form 
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Recall the Cauchy first law of continuum mechanics where there is equilibrium and no body 

force;  

0=ijdiv
                                                                                                                                          (14) 



Applied Science, Computing and Energy, 2025, 3(2):303-311 306 
 

     

where rf , f  and f  represent the body forces which are all zero. We are to consider the 

spherical coordinates taking into cognizance the fact that we are dealing with symmetric 

deformations. Applying the Cauchy stresses and transforming the obtained equilibrium equation, 

we have;  

                                                        

0,=][ 


−+ rr

'

rr

r

r

dR

d

                                                         (15) 

Recall that 

 𝜎𝑟𝑟 = 𝜎11 = 2𝐶10
2𝑟′𝑅

𝑟𝛾
+ 2𝐶01 (

2𝑟′𝑟

𝛾𝑅
+

2𝑟′𝑅𝛾

𝑟
)  

 𝜎𝜃𝜃 = 𝜎𝜑𝜑 = 𝜎33 = 𝜎22 = 2𝐶10
𝑟

𝑟′𝑅𝛾
+ 2𝐶01(

2𝑟′𝑟

𝛾𝑅
+

2𝑟𝛾

𝑅𝑟′
)                                                         

𝑑(2𝐶10
𝑟

𝑟′𝑅𝛾
+2𝐶01(

2𝑟′𝑟

𝛾𝑅
+

2𝑟𝛾

𝑅𝑟′
))

𝑑𝑅
+

2𝑟′

𝑟
(2𝐶10

2𝑟′𝑅

𝑟𝛾
+ 2𝐶01 (

2𝑟′𝑟

𝛾𝑅
+

2𝑟′𝑅𝛾

𝑟
) − ( 2𝐶10

𝑟

𝑟′𝑅𝛾
+ 2𝐶01(

2𝑟′𝑟

𝛾𝑅
+

2𝑟𝛾

𝑅𝑟′
)  ) = 0                                                                                  (16) 

Resolving eqn (16), we obtain: 

𝑟′′(2𝑟3𝑅𝑟′2𝐶01 − 2𝑟3𝑅𝐶10 − 2𝑟3𝛾2𝑅𝐶01) + 𝑟′4(2𝑟2𝑅𝐶01 + 4𝑅𝛾2𝐶10 + 2𝑅3) − 2𝑟′3𝛾𝑟3 +
𝑟′2(2𝑅𝑟𝛾𝐶10 + 2𝑅𝑟2𝛾𝐶01) + 𝑟′(2𝑅𝑟3𝛾𝐶10 − 2𝑟2𝐶10 − 2𝑟3𝛾2𝐶01 − 8𝑟3𝑅𝛾2𝐶01) = 0     

                        (17) 

Next, we develop a code to solve eqtn. (17) by applying the following boundary conditions; 

𝜎𝑟𝑟 = 2𝐶10
2𝑟′𝑅

𝑟𝛾
+ 2𝐶01 (

2𝑟′𝑟

𝛾𝑅
+

2𝑟′𝑅𝛾

𝑟
)   

At 𝑅 =  𝑎, 𝜎𝑟𝑟 = −𝜌  and at 𝑅 =  𝑏, 𝜎𝑟𝑟 = 0   

In solving the mixed boundary value problem, we used Collocation and Shooting method as 

shown in the results. 
 

3.0 Results and Discussion 
 

The results from both the collocation and 

shooting methods provide insight into the 

boundary value problem for the radial 

deformation 𝑟(𝑅)nd the associated radial 

stress 𝜎𝑟𝑟 in the nonlinear solid mechanics 

context described by your ODE and 

constitutive relations. 

Displacement Analysis 

The displacement plot 𝑟(𝑅)howing both 

collocation (black curve) and shooting (blue 

dashed curve), demonstrates how the two 

numerical methods track the solution across the 

interval  𝑅 ∈ [0.2,1.0]. 
As one might anticipate from a boundary value 

solver designed specifically for these nonlinear 

differential systems, the collocation solution is 

monotonic and smooth.  

The collocation result is closely followed by 

the shooting solution, suggesting that the 

starting value approach can match the two-

point method with suitable initial derivatives. 

Deviations or oscillations might suggest that 

the problem is stiff or that the initial 

estimations were not accurate.  

The displacement reflects the physics of thick-

walled tube inflation or a related mechanical 

boundary problem and is physically consistent, 

starting at the specified boundary condition and 

moving smoothly toward the outer boundary. 

Concerning the boundary criteria, 𝜎𝑟𝑟 is 

negative and reaches its maximum magnitude 

at 𝑅 =  𝑎, gradually transitioning to zero at 

𝑅 =  𝑏 (outer boundary): At 𝑅 = 𝑎,  (𝜎𝑟𝑟)  = 

−ρ and at  𝑅 =  𝑏 (𝜎𝑟𝑟)  = 0.  

The accuracy of numerical methods and the 

correctness of the solution are confirmed by the 

smooth decrease of (𝜎𝑟𝑟). While both curves 

exhibit numerically stable and physically 

meaningful behaviour, any abrupt leaps would 

suggest numerical instability.  

The robustness of the numerical formulation is 
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supported by the good agreement between the 

two approaches across the domain. 

 

 

 
Fig. 1: Collocation and Shooting Displacement for r(R) Vs. R 

. 

 
Fig. 2: Stress Analysis for Collocation Vs. Shooting for 𝜎𝑟𝑟 Vs. R 
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Fig. 3: Pressure Variation at 0.1MPa, 1MPa & 10MPa 

 
Fig. 4: Pressure Displacement Vs R 

 

Important information about the behaviour of 

the material is revealed by analyzing the 

nonlinear elastic deformation under various 

internal pressures:  

The lower pressure examples (0.1 MPa and 1 

MPa) surpassed the maximum mesh nodes, 

suggesting numerical difficulties at lower 

pressures, whereas only the 10 MPa case 

successfully converged using the collocation 

method.  

For 10MPa: 

Deformation of the inner radius: 𝑟(𝑎)  =
 1.559  (779% of the original radius)  

Deformation of the outer radius: 𝑟(𝑏)  =
 1.110 (111% of the original radius)  

The inner boundary is where the majority of the 

extremely nonlinear deformation occurs. 
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The solid red curve at 10 MPa exhibits 

considerable expansion, especially at the inner 

radius where 
𝑟

𝑅
 = 7.79.  

Approximate solutions indicate more moderate 

deformations that scale nonlinearly with 

pressure at lower pressures (dashed curves).  

Near the inner boundary, the nonlinear material 

reaction produces highly localized 

deformation, while the outer boundary 

experiences little change. 

Stress fluctuates between -10MPa at the inner 

barrier and 0MPa at the outer boundary in the 

10 MPa example. In the vicinity of the inner 

radius, higher pressures produce steeper stress 

gradients. The stress distribution differs from 

traditional linear elastic solutions due to the 

nonlinear constitutive interactions.  

Content Nonlinearity: Under high pressures, 

the Mooney-Rivlin model with the specified 

parameters (𝐶10= −2.9481 × 105 and 𝐶01= 

5.2082 × 105 ) shows severe nonlinear 

behaviour. 

The inner radius exhibits a concentration of 

large deformations, indicating possible 

locations for failure initiation in real-world 

applications.  

The material model might be better suited for 

high-pressure applications or call for 

alternative numerical techniques for low-

pressure regimes, as suggested by the 

convergence issues at lower pressures.  

The entire deformation field is influenced by 

the strong constraint created by the specified 

zero stress at the outer border. 

Lower pressures caused the collocation 

approach to falter, perhaps as a result of the 

differential equation coefficients' near-singular 

behaviour. This specific material model 

benefits from improved numerical conditioning 

at higher pressures.  

It may be necessary to use different numerical 

techniques for thorough pressure range 

analysis.  

 

 
Fig. 5: Graphical illustration of radial 𝜎𝑟𝑟  Vs. R considering different pressure 

measurement 
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This analysis shows how geometric constraints, 

material nonlinearity, and numerical solution 

techniques interact intricately in elasticity 

issues. 
 

4.2 Discussion of Results 

For stiff and nonlinear boundary value 

problems, the collocation approach (also 

known as a boundary value solver) is typically 

more reliable, ensuring that the solution 

complies with both boundary requirements.  

The shooting approach necessitates cautious 

initial estimations for r ′ (a). It yields results 

that are almost identical to collocation when 

the ODE is tweaked or not very rigid.  

Both strategies produce reliable displacement 

and stress predictions for the nonlinear model 

in this problem, demonstrating the well-

posedness of the ODE and the adequacy of the 

selected techniques and boundary conditions. 

A material experiencing nonlinear elastic 

deformation under internal pressure (or 

prescribed traction at the inner surface) is 

modeled by the displacement and stress 

responses.  

For thick-walled cylinders under pressure, 

where stress is greatest at the inner radius and 

gently relaxes to the specified value at the outer 

radius, monotonic profiles for both 𝑟 (𝑅) and 

𝜎𝑟𝑟 are in line with theoretical expectations.  

For this class of boundary value issues in 

nonlinear elasticity, these results validate the 

accuracy of the numerical implementation as 

well as the correctness of the mathematical 

formulation. 
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