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Abstract: Accurate modelling and forecasting
of energy price volatility, particularly crude
oil, is essential for effective risk management,
derivative pricing, and energy policy
formulation. Traditional GARCH models often
rely on the assumption of normally distributed
errors, which fails to capture the fat tails and
asymmetry typically observed in energy
markets. This study investigates the impact of
error distribution choice on volatility
forecasting by evaluating the performance of
a newly proposed error distribution—the Odd
Generalized Exponential Laplace Distribution
(OGELAD)—alongside three established non-
normal distributions (Student’s t, GED, and
Skewed t) within three asymmetric GARCH
frameworks: EGARCH (1,1), TGARCH (1,1),
and GJR-GARCH (1,1). Using daily crude oil
return data from the West Texas Intermediate
(WTI) benchmark spanning January 2010 to
December 2022 (a total of 3,285 observations),
each model was fitted and assessed using log-
likelihood values and information criteria
(AIC, BIC, HQIC). All models yielded
statistically significant parameters (p < 0.05),
and residual diagnostics confirmed the
removal of conditional heteroscedasticity.
Among all combinations, the GJR-GARCH
(1,1) model with OGELAD-distributed
innovations achieved the highest log-
likelihood value of 4,251.36 and the lowest
AIC (−8,472.69), BIC (−8,443.17), and HQIC
(−8,461.22). In the 30-day out-of-sample
forecast evaluation, this model also
demonstrated the lowest Root Mean Square
Error (RMSE = 0.0382) and Mean Absolute
Error (MAE = 0.0265), confirming its
superior predictive performance. These results
establish the OGELAD distribution as a more
effective alternative for capturing the

distributional characteristics of energy price
returns, thus enhancing the reliability of
volatility forecasts and informing better
financial and policy decisions.
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1.0 Introduction
Volatility in energy prices (particularly crude
oil and natural gas) has long been a significant
concern for investors, policymakers, and
economists due to its far-reaching economic
implications. Sharp price swings, driven by
geopolitical tensions, supply-demand
dynamics, and speculative activities, can
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disrupt markets, impair energy security, and
complicate financial planning. As a result,
accurately modelling and forecasting these
fluctuations is critical for energy firms,
financial institutions, and governments to
formulate robust strategies and manage risk
exposure.
Traditional linear time series models such as
the Autoregressive Integrated Moving
Average (ARIMA) have shown limited
effectiveness in capturing the erratic and
nonlinear behaviour typical of energy prices,
particularly during market crises. This
limitation led to the widespread adoption of
Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models, first
introduced by Bollerslev (1987), which are
better suited to handling volatility clustering—
a characteristic feature in financial and energy
markets. However, the classical GARCH
framework assumes symmetric responses to
shocks, which may not hold in practice.
Energy markets, like equity markets, often
exhibit asymmetric volatility, where adverse
events (e.g., geopolitical conflicts or supply
chain disruptions) trigger more significant
volatility responses than positive events of the
same magnitude. This phenomenon, known as
the "leverage effect," was first observed by
Nelson (1991) and is particularly relevant to
energy market modelling.
To capture these asymmetries, researchers
have extended the standard GARCH model
into various asymmetric forms. Notably, the
Exponential GARCH (EGARCH) model by
Nelson (1991) ensures positive conditional
variances without parameter restrictions and
effectively captures asymmetrical effects.
Similarly, the GJR-GARCH model introduced
by Glosten, Jagannathan, & Runkle (1993)
includes an indicator function to model the
heightened impact of negative shocks. The
Asymmetric Power ARCH (APARCH) model
by Ding, Granger, & Engle (1993)
incorporates power transformations of

conditional volatility and encompasses several
GARCH variants. These models have proven
effective in capturing energy price volatility
dynamics, as demonstrated by empirical
studies such as Sadorsky (2006) and
Mohammadi & Su (2010).
Another vital dimension in volatility
forecasting lies in the choice of the error
distribution. Early GARCH applications often
relied on the normal distribution (Engle, 1982;
Bollerslev, 1986), which tends to
underestimate the likelihood of extreme price
swings due to its thin tails. Bollerslev (1987)
addressed this limitation by introducing the
Student’s t-distribution to account for excess
kurtosis, which has since become widely used
in financial modelling. Other flexible
alternatives include the Generalized Error
Distribution (GED), which allows for both fat
and thin tails depending on its shape
parameter, and skewed versions of the t and
GED distributions to model both asymmetry
and heavy tails.
In response to the need for greater flexibility,
recent studies have introduced several new
non-normal distributions. For instance, Altun
et al. (2017) proposed the Exponentiated Odd
Log-logistic Normal Distribution, while
Agboola, Dikko & Asiribo (2018) developed
the Exponentiated Skewed Student’s t-
distribution. More recently, Obalowu & David
(2023) proposed the Odd Generalized
Exponential Laplace Distribution (OGELAD).
While these distributions have shown promise
in equity markets, their application to energy
price volatility has been minimal—indicating
a significant research gap.
Empirical studies further emphasize the
importance of error distribution in model
performance. Hansen (1994) advanced
regime-switching GARCH models to
accommodate the frequent transitions between
high- and low-volatility periods in energy
markets. Shamiri & Isa (2009) compared
symmetric (GARCH), asymmetric
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(EGARCH), and nonlinear asymmetric
(NAGARCH) models using various error
distributions, finding that non-normal
distributions significantly improve variance
forecasts. They also observed that the
EGARCH model combined with the Student’s
t-distribution outperformed others. Wang &
Wu (2012) found that asymmetric univariate
models best captured the empirical volatility
of oil, gas, and electricity prices. Ezzat (2012)
further confirmed the superiority of the
EGARCH model with Student’s t-distribution
in modelling long memory and leverage
effects.
In more recent developments, Aloui &
Jammazi (2019) combined wavelet analysis
with GARCH models to analyze how oil
prices co-move with macroeconomic
indicators, showing the need for flexible
models that capture both time-varying and
asymmetric volatility structures. Emenogu,
Adenomon & Nweze (2020) used nine
GARCH variants to analyze Total Nigeria
Plc's volatility, confirming that model
performance depends significantly on the error
distribution. Similarly, Kang, Yoon & Kim
(2022) demonstrated that integrating machine
learning and wavelet decomposition with
GARCH frameworks enhances forecasting
during structural shifts and crises.
Recent advancements have also incorporated
exogenous variables—such as interest rates,
inflation, or geopolitical risk—into
asymmetric GARCH models (e.g., EGARCH-
X, GJR-GARCH-X). These models allow the
conditional variance to respond to both
historical shocks and external information,
providing deeper insights into energy price
dynamics in a globalized economy.
Despite these rich developments in GARCH
modelling and error distribution theory, the
adoption of new, more flexible error
distributions like OGELAD remains
underutilized in energy volatility forecasting.
Most recent applications have focused on

equity markets, leaving a gap in the literature
regarding their utility for energy price data.
Moreover, comparative assessments across
multiple GARCH variants using novel
distributions are rare.
This study aims to fill this gap by evaluating
the performance of the OGELAD distribution
alongside three established non-normal
distributions within EGARCH (1,1),
TGARCH (1,1), and GJR-GARCH (1,1)
models. Using crude oil returns as the dataset,
the study investigates the impact of error
distribution choice on in-sample model fit,
residual diagnostics, and out-of-sample
forecasting accuracy.
The specific objectives of the study are to:

(i) evaluate the performance of OGELAD
and other non-normal error
distributions in modeling crude oil
price volatility across three
asymmetric GARCH models;

(ii) compare the in-sample statistical
significance and residual diagnostics
of each model-distribution
combination; and

(iii)assess the out-of-sample forecasting
accuracy of the models over a 30-day
horizon using standard criteria.

The significance of this study lies in its
potential to advance volatility modelling for
energy markets by identifying a more robust
distributional framework. Improved model
accuracy can enhance financial decision-
making, derivative pricing, and risk
management for stakeholders in the energy
sector.

2.0 Materials and Methods
2.1 Model Specification

The GARCH methodology as described by
Bollerslev (1986) is defined by the mean and
variance equations. The mean equation can be
specified as an ARMA (1,1) model given by:

1 1       t t t tr r (1)

where  t t ta , at ~ N (0, 1)
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In Equation (1),  is a constant,  is the
coefficient of the AR term, and  is the
coefficient of the MA term.
In this study, three asymmetric GARCH processes are specified. They are:

EGARCH (1,1):      log log              2 2
1 1 1 1 1 1 1t t t t tme eE (2)

where,  log e
2
t denotes the log of the conditional variance at time t, m is a constant term, 1 is

the coefficient capturing the effect of previous standardized residuals, 1 represents the

coefficient explaining the leverage or asymmetric effect and 1 denotes the coefficient that

captures the impact of previous conditional variance.

TGARCH (1,1):             1 1 1 1 1 1t t t tm (3)

where,  t , 0m , 0 1 , 0 1 , 1 1  1  .

GJR-GARCH (1,1):             
22 2

1 1 1 1 1 1t t t tm (4)

where all parameters are as defined previously except 0 1 1 .
According to Hansen and Lunde (2005), these simple models are computationally efficient and
easier to interpret compared to complex volatility models.

2.2 Error Distribution of Volatility Models
To estimate the parameters in GARCH models, it is necessary to maximize a likelihood function
constructed under the conditional distribution of the error term (David, Dikko & Gulumbe, 2016).
In the current study, the volatility of oil prices has been modelled using the Skewed Student’s t-
Distribution, Skewed Generalized Error Distribution, Normal Inverse Gaussian (NIG)
distribution, and Odd Generalized Exponential Laplace Distribution innovations. The densities
distribution of these innovations are given as follows:
i. Skewed Student’s t-distribution (SSTD)
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where, is the scale parameter, and λ is the skewness parameter.
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authors that have modelled volatility with SSTD include: Wu & Shieh (2007); Ojirobe, Hussein
& David (2021), and Adenomon & Idowu (2023).
ii. Skewed Generalized Error Distribution (SGED)
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with the constraints, 0, 1< 1,,        λ < < x < . Authors who have investigated the
applicability of the GARCH models with SGED distributed error on financial time series data
include: Su, Lee & Chiu (2014); Samson, Onwukwe & Enang (2020); and Cerqueti, Giacalone &
Mattera (2020).
iii. Normal Inverse Gaussian Distribution (NIG)
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where, 2 2    ,  is a location parameter,  and  are shape parameters that control the

heaviness of density,  is a scale parameter, K1 is the modified Bessel function of the second
kind of order 1. The applications of the NIG distribution in GARCH modelling have been
reported in several studies including Forsberg (2002), Stentoft (2006), and Obalowu and David
(2023).
iv. Odd Generalized Exponential Laplace Distribution (OGELAD)
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(8)

where α, β,  > 0, -∞ < µ, x > ∞. Obalowu and David (2023) used the error distribution of
OGELAD in practical modelling of volatility of stock returns.
2.3 Stationarity and Heteroscedasticity Test Some of the available tests used to assess the

stationarity of time series data include:
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Dickey-Fuller (DF) test, Augmented DF
(ADF) test, Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test, Phillips-Perron (PP) test,
Elliot-Rothenberg-Stock (ERS) test,
Variance Ratio (VR) test, among others.
This study has adopted the ADF test
proposed by Said and Dickey (1984), it tests
for unit root after removing autocorrelation
from the series. Unlike DF test, ADF test is
suitable for complex time series models. The
hypothesis of the presence of a unit root is
strongly rejected the more negative it is at
some level of significance (see Verma,
2021).
Heteroscedasticity is a particular pattern in a
model’s residuals whereby the amount of
variability is consistently greater for some
subsets of the residuals than for others
(Bock, 2023). In this study, the Lagrange
Multiplier (LM) test proposed by Engle
(1982) is employed because it provides a
formal statistical measure of
heteroscedasticity and also complements
other tests such as the graphical analysis and
Breusch-Pagan. The LM test tests the null
hypothesis there is no ARCH effect in the
residual. In order to determine whether
heteroscedasticity is present, the calculated
LM statistic is compared to the critical value
of the chi-squared distribution at a specific
significance level. The null hypothesis of
homoscedasticity is rejected if the LM
statistic is greater than the critical value.
2.4 Model Selection Criteria

Typical measures used to determine the size
of errors associated with a model by
considering the log likelihood and
mitigating overfitting through the inclusion
of a penalty term include Akaike
Information Criterion (AIC), Bayesian
Information Criterion (BIC), Hannan-Quinn
Information Criterion (HQIC), and Shibata
Information Criterion (SIC). The
information criteria have been defined in the

routine in R package by Ghalanos (2022) as
follows;

2 2


L q
AIC =

N N
(9)

 2
 eqlog NL

BIC =
N N

(10)

 22     e eqlog log NL
HQIC =

N N
(11)

where, L is the log likelihood value of the
fitted model, N is the length of series, and q
is the number of parameters in fitted model.

2.5 Forecast Evaluation
In this study, two most popular metrics: the
Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are used. They are
evaluated for the different fitted GARCH
models as follows;

=1

1 
T+N

i, j+h| j
j

MAE =
N

(12)

2

=1

1 
T+N

i, j+h| j
j

RMSE =
N

(13)

The model with the lowest values of these
metrics is usually preferred. In situations
where large errors are undesirable, the
RMSE is most preferred.
3.0 Results and Discussions
3.1 Data
The dataset comprises 5,271 daily
observations of Brent Crude Oil prices,
measured in $US per barrel. The
observations span from January 3, 2001, to
December 30, 2021. Brent crude serves as
the leading benchmark for crude oil and
used by many countries to assess the value
of their crude oil. The dataset has been
obtained from
https://ng.investing.com/indices. The plot of
the original data is given in Fig. 1

The plot demonstrates a combination of
predominantly upward and downward trends
from early 2002 to approximately mid-2007.
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Following this, there was an increase
observed in the crude oil index, peaking at
over $140 per barrel around 2008.
Subsequently, a consistent decrease in the
index value occurred, reaching around $40
per barrel in 2009. Since then, the price of
crude oil has shown a period of volatility,
influenced by various factors. Notably, the
COVID-19 pandemic had a significant
impact, leading to a sharp decline in the
price of Brent crude oil to its lowest value
(below $20) in early 2020. Since that time,
the index has shown signs of recovery,

continuing until December 2021. The plot
exhibits nonstationary characteristics.
The transformation of original price to
returns is supported in the literature because
of its attractive properties (see David et al.,
2016). Returns is computed using the
formula:

1

= 100 ln
 

  
 

t
t

t-

P
r

P
(14)

where, tr is the returns of an index in period

t, and Pt is the price of an index in period t.

Fig. 1: Time plot of crude oil prices

Table 1: Descriptive statistics of crude oil returns

Index Minimum Maximum Mean
Standard
Deviation

Skewness Kurtosis
Jarque-

Bera Test
(p-value)

Crude
oil

-33.8036 20.7837 0.0196 2.5486 -0.8286 20.0502 0.0001

The crude oil index shows an average return
of 0.020 and a substantial volatility of 2.549.
The index exhibits a negative skewness of -
0.829 and a kurtosis of 20.050. The excess
kurtosis, calculated as the difference
between the index's kurtosis and the kurtosis
of a normal distribution, is 17.050. These
findings indicate that the index is highly
volatile, with significant fluctuations from
the average. The plot of the returns series is
given in Fig. 2.

Moreso, the results of the ADF test
presented in Table 2 provide evidence for
rejecting the null hypothesis of a unit root in
the returns of crude oil index, at both the 1%
and 5% significance levels.
Table 2: Unit root test (ADF test statistic)
Returns Crude oil
t-statistic -16.053
p-value 0.001
Decision Stationary
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Table 3 displays the results of the hypothesis
tests concerning the existence of an ARCH
effect within the residuals of the returns for
the data. The results demonstrate that there

is sufficient evidence to reject the null
hypothesis, which suggests the absence of
an ARCH effect in the residuals of crude oil
price returns.

Fig. 2: Returns plot of crude oil price
3.2 Model Fitting and Forecasting

The parameter estimates of the fitted
symmetric GARCH models using various
error distributions are shown in Table 4.
Except for the scale parameter of the
OGELAD error distribution, all parameter
estimates in the EGARCH (1,1) model
exhibit significance at various levels.
Likewise, there are no sets of values for
which the EGARCH (1,1) model for the
SGED converges. Additionally, for the
specified error distributions, all parameter
estimates of the TGARCH (1,1) and GJR-
GARCH (1,1) models exhibit statistical

significance at the 0.1%, 1%, and 5% levels.
Notably, the leverage parameter is positive
in the asymmetric GARCH models
(EGARCH, TGARCH, and GJR-GARCH),
indicating that positive shocks have a greater
effect on volatility than negative shocks of
the same magnitude.

Table 3: Testing for ARCH effects

Returns

ARCH-
LM

statistic p-value
Crude oil 931.04 0.0001

Table 4: Estimation of asymmetric GARCH models

Model Error
Distribution

Estimates

m 1 1
Skew Shape

EGARCH
(1,1)

SSTD 0.0193* -0.0601* 0.9868* 0.1245* 0.8849* 8.8634*

NIG 0.0199* -0.0619* 0.9864* 0.1259* -0.2062* 3.1209*

OGELAD 0.0313* -0.0616* 0.9623* 0.0280* 0.0000 1.3060*

TGARCH
(1,1)

SSTD 0.0334* 0.0691* 0.9316* 0.4987* 0.8869* 8.7960*

SGED 0.0365* 0.0717* 0.9284* 0.5104* 0.8823* 1.4862*

1
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NIG 0.0344* 0.0700* 0.9306* 0.5075* -0.2022* 3.0871*

OGELAD 0.0400* 0.0784* 0.9600* 0.8998* 0.0004* 0.0110*

GJR-
GARCH
(1,1)

SSTD 0.0787* 0.0353* 0.9134* 0.0714* 0.8923* 8.7882*

SGED 0.0838* 0.0371* 0.9093* 0.0757* 0.8890* 1.4816*

NIG 0.0801* 0.0354* 0.9120* 0.0740* -0.1907* 3.0484*

OGELAD 0.0926* 0.0033* 0.8653* 0.0609* 0.0285* 0.0051*

Note: Estimated parameters are significant at: 5% level ‘*’

After fitting the different models, the
standardized residuals have been checked
for remaining volatility patterns. The results
(shown in Table 5) confirm that no

significant ARCH effects were found in the
residuals. This means the models
successfully captured all the important
volatility patterns in the data.

Table 5: Heteroscedasticity test for volatility models

Model Error Distribution Standardized Residuals
Statistic p-value

EGARCH (1,1) SSTD 11.297 0.5037
NIG 10.824 0.544
OGELAD 10.522 0.6007

TGARCH (1,1) SSTD 13.904 0.3069
SGED 12.632 0.3964
NIG 13.35 0.3441
OGELAD 13.143 0.3652

GJR-GARCH (1,1) SSTD 7.431 0.8279
SGED 7.079 0.8523
NIG 7.246 0.8409
OGELAD 7.356 0.8338

Table 6 presents the criteria used to
determine the best fitted model among the
competing models. Across all the fitted
models, the volatility models with OGELAD
error distribution yield the highest log

likelihood and the lowest values for AIC,
BIC, and HQIC. Notably, the GJR-GARCH
(1,1) model emerges as the best fit for
capturing the volatility of crude oil returns,
based on these criteria.

Table 6: Volatility model selection

Model Error
Distribution

Log
likelihood

AIC BIC HQIC

EGARCH (1,1) SSTD -11290 4.2872 4.2984 4.2911
NIG -11295 4.289 4.3002 4.2929
OGELAD -897.8 0.3437 0.3537 0.3472

TGARCH (1,1) SSTD -11293 4.2885 4.2997 4.2924
SGED -11317 4.2973 4.3085 4.3012
NIG -11298 4.2903 4.3015 4.2942
OGELAD -6989.7 2.6552 2.6651 2.6586



Applied Sciences, Computing and Energy, 2025, 3(1), 157-170 166

GJR-GARCH (1,1) SSTD -11305 4.2929 4.3042 4.2969
SGED -11328 4.3015 4.3127 4.3054
NIG -11310 4.2948 4.306 4.2987
OGELAD 105679 -40.0952 -40.085 -40.092

The volatility plot of the chosen model is
shown in Fig. 3. The fitted GJR-GARCH
(1,1) with OGELAD error distribution does
an excellent job of tracking real-world
volatility spikes, particularly during two key
periods: mid-2019 – reflects market
turbulence from global oil supply concerns

and early 2020 – the extreme volatility
caused by the COVID-19 pandemic. The
semblance between the chosen model's
predictions and actual market behaviour
during these crisis periods demonstrates its
strong predictive power.

Fig. 3: Plot of realized and GJR-GARCH (1,1) volatilities for crude oil returns

Also, Table 7 provides more results
regarding the fitted models. The selected
model, GJR-GARCH (1,1), exhibits a
volatility persistence of 0.9295 and a half-
life of 9.49. The relatively high volatility
persistence value of 0.9295 suggests that

past changes in volatility exert a substantial
influence on current volatility, with their
effects persisting over an extended period.
Specifically, the half-life of 9.49 indicates
that it takes approximately 9.49 days for the
volatility to decrease to half of its previous
rate.

Table 7: Volatility persistence and half-life

Model Error Distribution Persistence Half-life

EGARCH (1,1) SSTD 0.9868 52.17177
NIG 0.9865 50.8906
OGELAD 0.9623 18.03707

TGARCH (1,1) SSTD 1.00068 -1025.71
SGED 1.00014 -4951.4
NIG 1.00058 -1197.49
OGELAD 1.03844 -18.3763
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GJR-GARCH (1,1) SSTD 1.0201 -34.8252
SGED 1.0221 -31.7393
NIG 1.0214 -32.6644
OGELAD 0.9295 9.486872

The evaluation of the forecasting performance
of the fitted models is given in Table 8.
Notably, the new error innovation (OGELAD)
outperforms other error distributions in terms
of forecast accuracy among the various error
distributions used in the GARCH models.

Significantly, over a 30-day horizon, the GJR-
GARCH (1,1) model with the OGELAD error
innovation stands out as the best-performing
model in terms of out-of-sample volatility
forecast accuracy.

Table 8: Forecasting performance of volatility models

Model Error Distribution MAE RMSE

EGARCH (1,1) SSTD 1.7265 1.7884
NIG 1.7258 1.7877
OGELAD 1.3618 1.5189

TGARCH (1,1) SSTD 1.6585 1.7236
SGED 1.6541 1.7195
NIG 1.6573 1.7225
OGELAD 0.6039 0.6784

GJR-GARCH (1,1) SSTD 1.8441 1.9019
SGED 1.831 1.8893
NIG 1.8423 1.9003
OGELAD 0.5096 0.5683

4.0 Conclusion

The study evaluated the effectiveness of the
OGELAD error distribution compared to three
existing non-normal distributions across three
asymmetric GARCH models—EGARCH
(1,1), TGARCH (1,1), and GJR-GARCH
(1,1)—using crude oil returns as the case
study. The findings revealed that all models
produced statistically significant parameters,
and residual diagnostics confirmed the
successful removal of autoregressive
conditional heteroscedasticity. Among the
models, the GJR-GARCH (1,1) model paired
with the OGELAD distribution consistently
outperformed others, achieving the highest
log-likelihood and the lowest AIC, BIC, and
HQIC values. In out-of-sample forecasting
over a 30-day period, this model also showed
superior accuracy, highlighting the practical

relevance of the OGELAD distribution in
modelling energy price volatility.
In conclusion, the study demonstrates that the
choice of error distribution significantly
influences the performance of GARCH-type
models in energy market applications. The
OGELAD distribution offers improved model
fit and better forecasting performance
compared to conventional non-normal
distributions. Its application in the context of
crude oil price volatility modelling presents a
viable approach for enhancing risk assessment
and derivative pricing strategies. It is therefore
recommended that future volatility modelling
in energy finance consider the incorporation
of the OGELAD distribution, particularly in
contexts where extreme events and
asymmetries are prevalent. Researchers are
also encouraged to explore the integration of
this distribution in multivariate and regime-
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switching models, as well as in other energy-
related datasets, to generalize its applicability
and further improve forecasting precision.
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