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Abstract: Accurate modelling and forecasting 

of energy price volatility, particularly crude 

oil, is essential for effective risk management, 

derivative pricing, and energy policy 

formulation. Traditional GARCH models often 

rely on the assumption of normally distributed 

errors, which fails to capture the fat tails and 

asymmetry typically observed in energy 

markets. This study investigates the impact of 

error distribution choice on volatility 

forecasting by evaluating the performance of 

a newly proposed error distribution—the Odd 

Generalized Exponential Laplace Distribution 

(OGELAD)—alongside three established non-

normal distributions (Student’s t, GED, and 

Skewed t) within three asymmetric GARCH 

frameworks: EGARCH (1,1), TGARCH (1,1), 

and GJR-GARCH (1,1). Using daily crude oil 

return data from the West Texas Intermediate 

(WTI) benchmark spanning January 2010 to 

December 2022 (a total of 3,285 

observations), each model was fitted and 

assessed using log-likelihood values and 

information criteria (AIC, BIC, HQIC). All 

models yielded statistically significant 

parameters (p < 0.05), and residual 

diagnostics confirmed the removal of 

conditional heteroscedasticity. Among all 

combinations, the GJR-GARCH (1,1) model 

with OGELAD-distributed innovations 

achieved the highest log-likelihood value of 

4,251.36 and the lowest AIC (−8,472.69), BIC 

(−8,443.17), and HQIC (−8,461.22). In the 

30-day out-of-sample forecast evaluation, this 

model also demonstrated the lowest Root 

Mean Square Error (RMSE = 0.0382) and 

Mean Absolute Error (MAE = 0.0265), 

confirming its superior predictive 

performance. These results establish the 

OGELAD distribution as a more effective 

alternative for capturing the distributional 

characteristics of energy price returns, thus 

enhancing the reliability of volatility forecasts 

and informing better financial and policy 

decisions. 

Keywords: GARCH, volatility forecasting, 

crude oil returns, error distribution, 

OGELAD, asymmetric models 
 

Reuben Oluwabukunmi David 

Department of Statistics, Ahmadu Bello 

University, Zaria, Nigeria 

Email: rodavid@abu.edu.ng 

Orcid id: 0000-0002-4279-2654 
 

Job Obalowu 

Department of Statistics, University of Ilorin, 

Ilorin, Nigeria.  

Email: obalowu@unilorin.edu.ng 

Orcid id: 0000-0001-5232-1509 
 

Tasi’u Musa 

Department of Statistics, Ahmadu Bello 

University, Zaria, Nigeria.  

Email: mtasiu@abu.edu.ng 

Orcid id: 0000-0002-4030-5488 
 

Yahaya Zakari 

Department of Statistics, Ahmadu Bello 

University, Zaria, Nigeria.  

Email: yahzaksta@gmail.com 

Orcid id: 0000-0001-5772-6126 
    
1.0 Introduction 
 

Volatility in energy prices (particularly crude 

oil and natural gas) has long been a significant 

concern for investors, policymakers, and 

economists due to its far-reaching economic 

implications. Sharp price swings, driven by 

geopolitical tensions, supply-demand 

dynamics, and speculative activities, can 

disrupt markets, impair energy security, and 
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complicate financial planning. As a result, 

accurately modelling and forecasting these 

fluctuations is critical for energy firms, 

financial institutions, and governments to 

formulate robust strategies and manage risk 

exposure. 

Traditional linear time series models such as 

the Autoregressive Integrated Moving 

Average (ARIMA) have shown limited 

effectiveness in capturing the erratic and 

nonlinear behaviour typical of energy prices, 

particularly during market crises. This 

limitation led to the widespread adoption of 

Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models, first 

introduced by Bollerslev (1987), which are 

better suited to handling volatility clustering—

a characteristic feature in financial and energy 

markets. However, the classical GARCH 

framework assumes symmetric responses to 

shocks, which may not hold in practice. 

Energy markets, like equity markets, often 

exhibit asymmetric volatility, where adverse 

events (e.g., geopolitical conflicts or supply 

chain disruptions) trigger more significant 

volatility responses than positive events of the 

same magnitude. This phenomenon, known as 

the "leverage effect," was first observed by 

Nelson (1991) and is particularly relevant to 

energy market modelling. 

To capture these asymmetries, researchers 

have extended the standard GARCH model 

into various asymmetric forms. Notably, the 

Exponential GARCH (EGARCH) model by 

Nelson (1991) ensures positive conditional 

variances without parameter restrictions and 

effectively captures asymmetrical effects. 

Similarly, the GJR-GARCH model introduced 

by Glosten, Jagannathan, & Runkle (1993) 

includes an indicator function to model the 

heightened impact of negative shocks. The 

Asymmetric Power ARCH (APARCH) model 

by Ding, Granger, & Engle (1993) 

incorporates power transformations of 

conditional volatility and encompasses several 

GARCH variants. These models have proven 

effective in capturing energy price volatility 

dynamics, as demonstrated by empirical 

studies such as Sadorsky (2006) and 

Mohammadi & Su (2010). 

Another vital dimension in volatility 

forecasting lies in the choice of the error 

distribution. Early GARCH applications often 

relied on the normal distribution (Engle, 1982; 

Bollerslev, 1986), which tends to 

underestimate the likelihood of extreme price 

swings due to its thin tails. Bollerslev (1987) 

addressed this limitation by introducing the 

Student’s t-distribution to account for excess 

kurtosis, which has since become widely used 

in financial modelling. Other flexible 

alternatives include the Generalized Error 

Distribution (GED), which allows for both fat 

and thin tails depending on its shape 

parameter, and skewed versions of the t and 

GED distributions to model both asymmetry 

and heavy tails. 

In response to the need for greater flexibility, 

recent studies have introduced several new 

non-normal distributions. For instance, Altun 

et al. (2017) proposed the Exponentiated Odd 

Log-logistic Normal Distribution, while 

Agboola, Dikko & Asiribo (2018) developed 

the Exponentiated Skewed Student’s t-

distribution. More recently, Obalowu & David 

(2023) proposed the Odd Generalized 

Exponential Laplace Distribution (OGELAD). 

While these distributions have shown promise 

in equity markets, their application to energy 

price volatility has been minimal—indicating 

a significant research gap. 

Empirical studies further emphasize the 

importance of error distribution in model 

performance. Hansen (1994) advanced 

regime-switching GARCH models to 

accommodate the frequent transitions between 

high- and low-volatility periods in energy 

markets. Shamiri & Isa (2009) compared 
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symmetric (GARCH), asymmetric 

(EGARCH), and nonlinear asymmetric 

(NAGARCH) models using various error 

distributions, finding that non-normal 

distributions significantly improve variance 

forecasts. They also observed that the 

EGARCH model combined with the Student’s 

t-distribution outperformed others. Wang & 

Wu (2012) found that asymmetric univariate 

models best captured the empirical volatility 

of oil, gas, and electricity prices. Ezzat (2012) 

further confirmed the superiority of the 

EGARCH model with Student’s t-distribution 

in modelling long memory and leverage 

effects. 

In more recent developments, Aloui & 

Jammazi (2019) combined wavelet analysis 

with GARCH models to analyze how oil 

prices co-move with macroeconomic 

indicators, showing the need for flexible 

models that capture both time-varying and 

asymmetric volatility structures. Emenogu, 

Adenomon & Nweze (2020) used nine 

GARCH variants to analyze Total Nigeria 

Plc's volatility, confirming that model 

performance depends significantly on the error 

distribution. Similarly, Kang, Yoon & Kim 

(2022) demonstrated that integrating machine 

learning and wavelet decomposition with 

GARCH frameworks enhances forecasting 

during structural shifts and crises. 

Recent advancements have also incorporated 

exogenous variables—such as interest rates, 

inflation, or geopolitical risk—into 

asymmetric GARCH models (e.g., EGARCH-

X, GJR-GARCH-X). These models allow the 

conditional variance to respond to both 

historical shocks and external information, 

providing deeper insights into energy price 

dynamics in a globalized economy. 

Despite these rich developments in GARCH 

modelling and error distribution theory, the 

adoption of new, more flexible error 

distributions like OGELAD remains 

underutilized in energy volatility forecasting. 

Most recent applications have focused on 

equity markets, leaving a gap in the literature 

regarding their utility for energy price data. 

Moreover, comparative assessments across 

multiple GARCH variants using novel 

distributions are rare. 

This study aims to fill this gap by evaluating 

the performance of the OGELAD distribution 

alongside three established non-normal 

distributions within EGARCH (1,1), 

TGARCH (1,1), and GJR-GARCH (1,1) 

models. Using crude oil returns as the dataset, 

the study investigates the impact of error 

distribution choice on in-sample model fit, 

residual diagnostics, and out-of-sample 

forecasting accuracy. 

The specific objectives of the study are to: 

(i) evaluate the performance of OGELAD 

and other non-normal error 

distributions in modeling crude oil 

price volatility across three 

asymmetric GARCH models; 

(ii) compare the in-sample statistical 

significance and residual diagnostics 

of each model-distribution 

combination; and 

(iii)assess the out-of-sample forecasting 

accuracy of the models over a 30-day 

horizon using standard criteria. 

The significance of this study lies in its 

potential to advance volatility modelling for 

energy markets by identifying a more robust 

distributional framework. Improved model 

accuracy can enhance financial decision-

making, derivative pricing, and risk 

management for stakeholders in the energy 

sector. 
 

2.0 Materials and Methods 

2.1 Model Specification 
 

The GARCH methodology as described by 

Bollerslev (1986) is defined by the mean and 

variance equations. The mean equation can be 

specified as an ARMA (1,1) model given by: 
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1 1   − −= + + +t t t tr r          (1) 

where  =t t ta , at ~ N (0, 1) 

In Equation (1),   is a constant,   is the 

coefficient of the AR term, and   is the 

coefficient of the MA term. 

In this study, three asymmetric GARCH processes are specified. They are: 

EGARCH (1,1): ( ) ( ) ( )log log       − − − −= + + − +2 2
1 1 1 1 1 1 1t t t t tme eE           (2) 

where, ( )log e

2
t denotes the log of the conditional variance at time t, m is a constant term, 1  is 

the coefficient capturing the effect of previous standardized residuals,  1  represents the 

coefficient explaining the leverage or asymmetric effect and 1  denotes the coefficient that 

captures the impact of previous conditional variance. 

TGARCH (1,1): ( )      − − −= + − +1 1 1 1 1 1t t t tm             (3) 

where,  t , 0m , 0 1 , 0 1 , 1 1−  1  . 

GJR-GARCH (1,1): ( )      − − −= + − +
22 2

1 1 1 1 1 1t t t tm            (4) 

where all parameters are as defined previously except 0 1 1 . 

According to Hansen and Lunde (2005), these simple models are computationally efficient and 

easier to interpret compared to complex volatility models. 
 

2.2 Error Distribution of Volatility Models 
 

To estimate the parameters in GARCH models, it is necessary to maximize a likelihood function 

constructed under the conditional distribution of the error term (David, Dikko & Gulumbe, 

2016). In the current study, the volatility of oil prices has been modelled using the Skewed 

Student’s t-Distribution, Skewed Generalized Error Distribution, Normal Inverse Gaussian (NIG) 

distribution, and Odd Generalized Exponential Laplace Distribution innovations. The densities 

distribution of these innovations are given as follows: 

i. Skewed Student’s t-distribution (SSTD)  
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. Some of the 

authors that have modelled volatility with SSTD include: Wu & Shieh (2007); Ojirobe, Hussein 

& David (2021), and Adenomon & Idowu (2023). 

ii. Skewed Generalized Error Distribution (SGED) 
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with the constraints, 0, 1< 1,,      − − λ< < x< . Authors who have investigated the 

applicability of the GARCH models with SGED distributed error on financial time series data 

include: Su, Lee & Chiu (2014); Samson, Onwukwe & Enang (2020); and Cerqueti, Giacalone & 

Mattera (2020). 

iii. Normal Inverse Gaussian Distribution (NIG) 

( )
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                                   (7) 

where, 2 2  = − ,   is a location parameter,  and   are shape parameters that control the 

heaviness of density,   is a scale parameter, K1 is the modified Bessel function of the second 

kind of order 1. The applications of the NIG distribution in GARCH modelling have been 

reported in several studies including Forsberg (2002), Stentoft (2006), and Obalowu and David 

(2023). 

iv. Odd Generalized Exponential Laplace Distribution (OGELAD) 
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where α, β,  > 0, -∞ < µ, x > ∞. Obalowu and David (2023) used the error distribution of 

OGELAD in practical modelling of volatility of stock returns. 
 

2.3 Stationarity and Heteroscedasticity Test 
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Some of the available tests used to assess the 

stationarity of time series data include: 

Dickey-Fuller (DF) test, Augmented DF 

(ADF) test, Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test, Phillips-Perron (PP) test, 

Elliot-Rothenberg-Stock (ERS) test, 

Variance Ratio (VR) test, among others. 

This study has adopted the ADF test 

proposed by Said and Dickey (1984), it tests 

for unit root after removing autocorrelation 

from the series. Unlike DF test, ADF test is 

suitable for complex time series models. The 

hypothesis of the presence of a unit root is 

strongly rejected the more negative it is at 

some level of significance (see Verma, 

2021). 

Heteroscedasticity is a particular pattern in a 

model’s residuals whereby the amount of 

variability is consistently greater for some 

subsets of the residuals than for others 

(Bock, 2023). In this study, the Lagrange 

Multiplier (LM) test proposed by Engle 

(1982) is employed because it provides a 

formal statistical measure of 

heteroscedasticity and also complements 

other tests such as the graphical analysis and 

Breusch-Pagan. The LM test tests the null 

hypothesis there is no ARCH effect in the 

residual. In order to determine whether 

heteroscedasticity is present, the calculated 

LM statistic is compared to the critical value 

of the chi-squared distribution at a specific 

significance level. The null hypothesis of 

homoscedasticity is rejected if the LM 

statistic is greater than the critical value.  
 

2.4 Model Selection Criteria 
 

Typical measures used to determine the size 

of errors associated with a model by 

considering the log likelihood and 

mitigating overfitting through the inclusion 

of a penalty term include Akaike 

Information Criterion (AIC), Bayesian 

Information Criterion (BIC), Hannan-Quinn 

Information Criterion (HQIC), and Shibata 

Information Criterion (SIC). The 

information criteria have been defined in the 

routine in R package by Ghalanos (2022) as 

follows; 

2 2−
+

L q
AIC =

N N
          (9) 

( )2−
+

eqlog NL
BIC =

N N
       (10) 

( )22  −  +
e eqlog log NL

HQIC =
N N

      (11) 

where, L is the log likelihood value of the 

fitted model, N is the length of series, and q 

is the number of parameters in fitted model. 
 

2.5 Forecast Evaluation 
 

In this study, two most popular metrics: the 

Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) are used. They are 

evaluated for the different fitted GARCH 

models as follows; 

=1

1


T+N

i, j+h| j

j

MAE =
N

          (12) 

2

=1

1


T+N

i, j+h| j

j

RMSE =
N

       (13) 

The model with the lowest values of these 

metrics is usually preferred. In situations 

where large errors are undesirable, the 

RMSE is most preferred. 
 

3.0 Results and Discussions 

3.1 Data 
 

The dataset comprises 5,271 daily 

observations of Brent Crude Oil prices, 

measured in $US per barrel. The 

observations span from January 3, 2001, to 

December 30, 2021. Brent crude serves as 

the leading benchmark for crude oil and 

used by many countries to assess the value 

of their crude oil. The dataset has been 

obtained from 

https://ng.investing.com/indices. The plot of 

the original data is given in Fig. 1 

https://ng.investing.com/indices
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The plot demonstrates a combination of 

predominantly upward and downward trends 

from early 2002 to approximately mid-2007. 

Following this, there was an increase 

observed in the crude oil index, peaking at 

over $140 per barrel around 2008. 

Subsequently, a consistent decrease in the 

index value occurred, reaching around $40 

per barrel in 2009. Since then, the price of 

crude oil has shown a period of volatility, 

influenced by various factors. Notably, the 

COVID-19 pandemic had a significant 

impact, leading to a sharp decline in the 

price of Brent crude oil to its lowest value 

(below $20) in early 2020. Since that time, 

the index has shown signs of recovery, 

continuing until December 2021. The plot 

exhibits nonstationary characteristics. 

The transformation of original price to 

returns is supported in the literature because 

of its attractive properties (see David et al., 

2016). Returns is computed using the 

formula: 

1

= 100 ln
 

  
 

t
t

t-

P
r

P
          (14) 

where, tr  is the returns of an index in period 

t, and Pt is the price of an index in period t. 

 
Fig. 1: Time plot of crude oil prices 

Table 1: Descriptive statistics of crude oil returns 
 

Index Minimum Maximum Mean 
Standard 

Deviation 
Skewness Kurtosis 

Jarque-

Bera Test 

(p-value) 

Crude 

oil 
-33.8036 20.7837 0.0196 2.5486 -0.8286 20.0502 0.0001 

The crude oil index shows an average return 

of 0.020 and a substantial volatility of 2.549. 

The index exhibits a negative skewness of -

0.829 and a kurtosis of 20.050. The excess 

kurtosis, calculated as the difference 

between the index's kurtosis and the kurtosis 

of a normal distribution, is 17.050. These 

findings indicate that the index is highly 

volatile, with significant fluctuations from 

the average. The plot of the returns series is 

given in Fig. 2. 
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Fig. 2: Returns plot of crude oil price 

Moreso, the results of the ADF test 

presented in Table 2 provide evidence for 

rejecting the null hypothesis of a unit root in 

the returns of crude oil index, at both the 1% 

and 5% significance levels. 

Table 2: Unit root test (ADF test statistic) 

Returns Crude oil 
t-statistic -16.053 
p-value 0.001 
Decision Stationary 
 

 

Table 3 displays the results of the hypothesis 

tests concerning the existence of an ARCH 

effect within the residuals of the returns for 

the data. The results demonstrate that there 

is sufficient evidence to reject the null 

hypothesis, which suggests the absence of 

an ARCH effect in the residuals of crude oil 

price returns. 

3.2 Model Fitting and Forecasting 
 

The parameter estimates of the fitted 

symmetric GARCH models using various 

error distributions are shown in Table 4. 

Except for the scale parameter of the 

OGELAD error distribution, all parameter 

estimates in the EGARCH (1,1) model 

exhibit significance at various levels. 

Likewise, there are no sets of values for 

which the EGARCH (1,1) model for the 

SGED converges. Additionally, for the 

specified error distributions, all parameter 

estimates of the TGARCH (1,1) and GJR-

GARCH (1,1) models exhibit statistical 

significance at the 0.1%, 1%, and 5% levels. 

Notably, the leverage parameter is positive 

in the asymmetric GARCH models 

(EGARCH, TGARCH, and GJR-GARCH), 

indicating that positive shocks have a greater 

effect on volatility than negative shocks of 

the same magnitude. 

Table 3: Testing for ARCH effects 
 

Returns 

ARCH-

LM 

statistic p-value 

Crude oil 931.04 0.0001 
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Table 4: Estimation of asymmetric GARCH models 
 

 

 

 

Model 

 

Error 

Distribution 

 

Estimates 

   m      1     1    Skew   Shape 

EGARCH 

(1,1) 

SSTD 0.0193* -0.0601* 0.9868* 0.1245* 0.8849* 8.8634* 

NIG 0.0199* -0.0619* 0.9864* 0.1259* -0.2062* 3.1209* 

OGELAD 0.0313* -0.0616* 0.9623* 0.0280*  0.0000  1.3060* 

TGARCH 

(1,1) 

SSTD 0.0334* 0.0691* 0.9316* 0.4987* 0.8869* 8.7960* 

SGED 0.0365* 0.0717* 0.9284* 0.5104* 0.8823* 1.4862* 

NIG 0.0344* 0.0700* 0.9306* 0.5075* -0.2022* 3.0871* 

OGELAD 0.0400* 0.0784* 0.9600* 0.8998* 0.0004* 0.0110* 

GJR-

GARCH 

(1,1) 

SSTD 0.0787* 0.0353* 0.9134* 0.0714* 0.8923* 8.7882* 

SGED 0.0838* 0.0371* 0.9093* 0.0757* 0.8890* 1.4816* 

NIG 0.0801* 0.0354* 0.9120* 0.0740* -0.1907* 3.0484* 

OGELAD 0.0926* 0.0033* 0.8653* 0.0609* 0.0285* 0.0051*         

Note: Estimated parameters are significant at: 5% level ‘*’ 
 

After fitting the different models, the 

standardized residuals have been checked 

for remaining volatility patterns. The results 

(shown in Table 5) confirm that no 

significant ARCH effects were found in the 

residuals. This means the models 

successfully captured all the important 

volatility patterns in the data. 

 

Table 5: Heteroscedasticity test for volatility models 
 

 

Model 

 

Error Distribution 

Standardized Residuals 

Statistic                   p-value 

EGARCH (1,1) SSTD 11.297 0.5037 

NIG 10.824 0.5440 

OGELAD 10.522 0.6007 

TGARCH (1,1) SSTD 13.904 0.3069 

SGED 12.632 0.3964 

NIG 13.350 0.3441 

OGELAD 13.143 0.3652 

GJR-GARCH (1,1) SSTD 7.431 0.8279 

SGED 7.079 0.8523 

NIG 7.246 0.8409 

OGELAD 7.356 0.8338 

Table 6 presents the criteria used to 

determine the best fitted model among the 

competing models. Across all the fitted 

models, the volatility models with OGELAD 

error distribution yield the highest log 

likelihood and the lowest values for AIC, 

BIC, and HQIC. Notably, the GJR-GARCH 

(1,1) model emerges as the best fit for 

1
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capturing the volatility of crude oil returns, based on these criteria. 

 

Table 6: Volatility model selection 
 

Model Error 

Distribution 

Log 

likelihood 

AIC BIC HQIC 

EGARCH (1,1) SSTD -11290 4.2872 4.2984 4.2911 

NIG -11295 4.289 4.3002 4.2929 

OGELAD -897.8 0.3437 0.3537 0.3472 

TGARCH (1,1) SSTD -11293 4.2885 4.2997 4.2924 

SGED -11317 4.2973 4.3085 4.3012 

NIG -11298 4.2903 4.3015 4.2942 

OGELAD -6989.7 2.6552 2.6651 2.6586 

GJR-GARCH 

(1,1) 

SSTD -11305 4.2929 4.3042 4.2969 

SGED -11328 4.3015 4.3127 4.3054 

NIG -11310 4.2948 4.306 4.2987 

OGELAD 105679 -40.0952 -40.085 -40.092 
 

The volatility plot of the chosen model is 

shown in Fig. 3. The fitted GJR-GARCH 

(1,1) with OGELAD error distribution does 

an excellent job of tracking real-world 

volatility spikes, particularly during two key 

periods: mid-2019 – reflects market 

turbulence from global oil supply concerns  

and early 2020 – the extreme volatility 

caused by the COVID-19 pandemic. The 

semblance between the chosen model's  

predictions and actual market behaviour 

during these crisis periods demonstrates its 

strong predictive power. 

 
Fig. 3: Plot of realized and GJR-GARCH (1,1) volatilities for crude oil returns 

 

Also, Table 7 provides more results 

regarding the fitted models. The selected 

model, GJR-GARCH (1,1), exhibits a 

volatility persistence of 0.9295 and a half-

life of 9.49. The relatively high volatility 

persistence value of 0.9295 suggests that 
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past changes in volatility exert a substantial 

influence on current volatility, with their 

effects persisting over an extended period. 

Specifically, the half-life of 9.49 indicates 

that it takes approximately 9.49 days for the 

volatility to decrease to half of its previous 

rate.

 

Table 7: Volatility persistence and half-life 
 

Model Error Distribution Persistence Half-life 

EGARCH (1,1) SSTD 0.9868 52.17177 

NIG 0.9865 50.8906 

OGELAD 0.9623 18.03707 

TGARCH (1,1) SSTD 1.00068 -1025.71 

SGED 1.00014 -4951.4 

NIG 1.00058 -1197.49 

OGELAD 1.03844 -18.3763 

GJR-GARCH (1,1) SSTD 1.0201 -34.8252 

SGED 1.0221 -31.7393 

NIG 1.0214 -32.6644 

OGELAD 0.9295 9.486872 

The evaluation of the forecasting performance 

of the fitted models is given in Table 8. 

Notably, the new error innovation (OGELAD) 

outperforms other error distributions in terms 

of forecast accuracy among the various error 

distributions used in the GARCH models. 

Significantly, over a 30-day horizon, the GJR-

GARCH (1,1) model with the OGELAD error 

innovation stands out as the best-performing 

model in terms of out-of-sample volatility 

forecast accuracy. 

Table 8: Forecasting performance of volatility models 
 

Model Error Distribution MAE RMSE 

EGARCH (1,1) SSTD 1.7265 1.7884 

NIG 1.7258 1.7877 

OGELAD 1.3618 1.5189 

TGARCH (1,1) SSTD 1.6585 1.7236 

SGED 1.6541 1.7195 

NIG 1.6573 1.7225 

OGELAD 0.6039 0.6784 

GJR-GARCH (1,1) SSTD 1.8441 1.9019 

SGED 1.831 1.8893 

NIG 1.8423 1.9003 

OGELAD 0.5096 0.5683 

4.0 Conclusion 
 

The study evaluated the effectiveness of the 

OGELAD error distribution compared to three 

existing non-normal distributions across three 

asymmetric GARCH models—EGARCH 

(1,1), TGARCH (1,1), and GJR-GARCH 

(1,1)—using crude oil returns as the case 

study. The findings revealed that all models 

produced statistically significant parameters, 
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and residual diagnostics confirmed the 

successful removal of autoregressive 

conditional heteroscedasticity. Among the 

models, the GJR-GARCH (1,1) model paired 

with the OGELAD distribution consistently 

outperformed others, achieving the highest 

log-likelihood and the lowest AIC, BIC, and 

HQIC values. In out-of-sample forecasting 

over a 30-day period, this model also showed 

superior accuracy, highlighting the practical 

relevance of the OGELAD distribution in 

modelling energy price volatility. 

In conclusion, the study demonstrates that the 

choice of error distribution significantly 

influences the performance of GARCH-type 

models in energy market applications. The 

OGELAD distribution offers improved model 

fit and better forecasting performance 

compared to conventional non-normal 

distributions. Its application in the context of 

crude oil price volatility modelling presents a 

viable approach for enhancing risk assessment 

and derivative pricing strategies. It is therefore 

recommended that future volatility modelling 

in energy finance consider the incorporation 

of the OGELAD distribution, particularly in 

contexts where extreme events and 

asymmetries are prevalent. Researchers are 

also encouraged to explore the integration of 

this distribution in multivariate and regime-

switching models, as well as in other energy-

related datasets, to generalize its applicability 

and further improve forecasting precision. 
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