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Beyond Normality: OGELAD Error Distribution in Energy Prices
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Abstract: Accurate modelling and forecasting
of energy price volatility, particularly crude
oil, is essential for effective risk management,
derivative pricing, and energy policy
formulation. Traditional GARCH models often
rely on the assumption of normally distributed
errors, which fails to capture the fat tails and
asymmetry typically observed in energy
markets. This study investigates the impact of
error distribution choice on volatility
forecasting by evaluating the performance of
a newly proposed error distribution—the Odd
Generalized Exponential Laplace Distribution
(OGELAD)—alongside three established non-
normal distributions (Student’s t, GED, and
Skewed t) within three asymmetric GARCH
frameworks: EGARCH (1,1), TGARCH (1,1),
and GJR-GARCH (1,1). Using daily crude oil
return data from the West Texas Intermediate
(WTI) benchmark spanning January 2010 to
December 2022 (a total of 3,285
observations), each model was fitted and
assessed using log-likelihood values and
information criteria (AIC, BIC, HQIC). All
models  yielded statistically  significant
parameters (p < 0.05), and residual
diagnostics confirmed the removal of
conditional heteroscedasticity. Among all
combinations, the GJR-GARCH (1,1) model
with OGELAD-distributed innovations
achieved the highest log-likelihood value of
4,251.36 and the lowest AIC (—8,472.69), BIC
(—8,443.17), and HQIC (—8,461.22). In the
30-day out-of-sample forecast evaluation, this
model also demonstrated the lowest Root
Mean Square Error (RMSE = 0.0382) and

Mean Absolute Error (MAE = 0.0265),
confirming its superior predictive
performance. These results establish the

OGELAD distribution as a more effective

alternative for capturing the distributional
characteristics of energy price returns, thus
enhancing the reliability of volatility forecasts
and informing better financial and policy
decisions.
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1.0 Introduction

Volatility in energy prices (particularly crude
oil and natural gas) has long been a significant
concern for investors, policymakers, and
economists due to its far-reaching economic
implications. Sharp price swings, driven by
geopolitical tensions, supply-demand
dynamics, and speculative activities, can
disrupt markets, impair energy security, and
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complicate financial planning. As a result,
accurately modelling and forecasting these
fluctuations is critical for energy firms,
financial institutions, and governments to
formulate robust strategies and manage risk
exposure.

Traditional linear time series models such as
the  Autoregressive Integrated  Moving
Average (ARIMA) have shown limited
effectiveness in capturing the erratic and
nonlinear behaviour typical of energy prices,
particularly during market crises. This
limitation led to the widespread adoption of
Generalized  Autoregressive  Conditional
Heteroskedasticity (GARCH) models, first
introduced by Bollerslev (1987), which are
better suited to handling volatility clustering—
a characteristic feature in financial and energy
markets. However, the classical GARCH
framework assumes symmetric responses to
shocks, which may not hold in practice.
Energy markets, like equity markets, often
exhibit asymmetric volatility, where adverse
events (e.g., geopolitical conflicts or supply
chain disruptions) trigger more significant
volatility responses than positive events of the
same magnitude. This phenomenon, known as
the "leverage effect,"” was first observed by
Nelson (1991) and is particularly relevant to
energy market modelling.

To capture these asymmetries, researchers
have extended the standard GARCH model
into various asymmetric forms. Notably, the
Exponential GARCH (EGARCH) model by
Nelson (1991) ensures positive conditional
variances without parameter restrictions and
effectively captures asymmetrical effects.
Similarly, the GIR-GARCH model introduced
by Glosten, Jagannathan, & Runkle (1993)
includes an indicator function to model the
heightened impact of negative shocks. The
Asymmetric Power ARCH (APARCH) model
by Ding, Granger, & Engle (1993)
incorporates  power transformations  of

conditional volatility and encompasses several
GARCH variants. These models have proven
effective in capturing energy price volatility

dynamics, as demonstrated by empirical
studies such as Sadorsky (2006) and
Mohammadi & Su (2010).

Another vital dimension in volatility

forecasting lies in the choice of the error
distribution. Early GARCH applications often
relied on the normal distribution (Engle, 1982;
Bollerslev, 1986), which tends to
underestimate the likelihood of extreme price
swings due to its thin tails. Bollerslev (1987)
addressed this limitation by introducing the
Student’s t-distribution to account for excess
kurtosis, which has since become widely used
in financial modelling. Other flexible
alternatives include the Generalized Error
Distribution (GED), which allows for both fat
and thin tails depending on its shape
parameter, and skewed versions of the t and
GED distributions to model both asymmetry
and heavy tails.

In response to the need for greater flexibility,
recent studies have introduced several new
non-normal distributions. For instance, Altun
et al. (2017) proposed the Exponentiated Odd
Log-logistic Normal Distribution, while
Agboola, Dikko & Asiribo (2018) developed
the Exponentiated Skewed Student’s t-
distribution. More recently, Obalowu & David
(2023) proposed the Odd Generalized
Exponential Laplace Distribution (OGELAD).
While these distributions have shown promise
in equity markets, their application to energy
price volatility has been minimal—indicating
a significant research gap.

Empirical studies further emphasize the
importance of error distribution in model
performance. Hansen (1994) advanced
regime-switching GARCH  models to
accommodate the frequent transitions between
high- and low-volatility periods in energy
markets. Shamiri & Isa (2009) compared
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symmetric (GARCH), asymmetric
(EGARCH), and nonlinear asymmetric
(NAGARCH) models using various error
distributions,  finding  that  non-normal
distributions significantly improve variance
forecasts. They also observed that the
EGARCH model combined with the Student’s
t-distribution outperformed others. Wang &
Wu (2012) found that asymmetric univariate
models best captured the empirical volatility
of oil, gas, and electricity prices. Ezzat (2012)
further confirmed the superiority of the
EGARCH model with Student’s t-distribution
in modelling long memory and leverage
effects.

In more recent developments, Aloui &
Jammazi (2019) combined wavelet analysis
with GARCH models to analyze how oil
prices co-move  with  macroeconomic
indicators, showing the need for flexible
models that capture both time-varying and
asymmetric volatility structures. Emenogu,
Adenomon & Nweze (2020) used nine
GARCH variants to analyze Total Nigeria
Plc's volatility, confirming that model
performance depends significantly on the error
distribution. Similarly, Kang, Yoon & Kim
(2022) demonstrated that integrating machine
learning and wavelet decomposition with
GARCH frameworks enhances forecasting
during structural shifts and crises.

Recent advancements have also incorporated
exogenous Vvariables—such as interest rates,
inflation, or  geopolitical risk—into
asymmetric GARCH models (e.g., EGARCH-
X, GJR-GARCH-X). These models allow the
conditional variance to respond to both
historical shocks and external information,
providing deeper insights into energy price
dynamics in a globalized economy.

Despite these rich developments in GARCH
modelling and error distribution theory, the
adoption of new, more flexible error
distributions  like  OGELAD  remains

underutilized in energy volatility forecasting.
Most recent applications have focused on
equity markets, leaving a gap in the literature
regarding their utility for energy price data.
Moreover, comparative assessments across
multiple GARCH variants using novel
distributions are rare.

This study aims to fill this gap by evaluating
the performance of the OGELAD distribution
alongside three established non-normal
distributions  within  EGARCH  (1,1),
TGARCH (1,1), and GJR-GARCH (1,1)
models. Using crude oil returns as the dataset,
the study investigates the impact of error
distribution choice on in-sample model fit,
residual  diagnostics, and out-of-sample
forecasting accuracy.

The specific objectives of the study are to:

(i) evaluate the performance of OGELAD
and other non-normal error
distributions in modeling crude oil
price  volatility = across  three
asymmetric GARCH models;

(if) compare the in-sample statistical
significance and residual diagnostics
of each model-distribution
combination; and

(iii)assess the out-of-sample forecasting
accuracy of the models over a 30-day
horizon using standard criteria.

The significance of this study lies in its
potential to advance volatility modelling for
energy markets by identifying a more robust
distributional framework. Improved model
accuracy can enhance financial decision-
making, derivative pricing, and risk
management for stakeholders in the energy
sector.

2.0 Materials and Methods
2.1 Model Specification

The GARCH methodology as described by
Bollerslev (1986) is defined by the mean and
variance equations. The mean equation can be
specified as an ARMA (1,1) model given by:
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L=4+6r ,+vs ,+¢ (1) In Equation (1), £ is a constant, & is the

where & =ao,, ai~ N (0, 1) coefficient of the AR term, and v is the
coefficient of the MA term.

In this study, three asymmetric GARCH processes are specified. They are:

EGARCH (1,1): log, (of): m+a,&,_ +7, (|‘9H| —Ele,,|)+ Blog, (oﬁl) (2)
where, Ioge(af)denotes the log of the conditional variance at time t, m is a constant term, ¢, is
the coefficient capturing the effect of previous standardized residuals, y, represents the

coefficient explaining the leverage or asymmetric effect and S, denotes the coefficient that
captures the impact of previous conditional variance.

TGARCH (1,1): 0, =m+a (|- 1.6 )+ Bios €)
where, o,, m>0, o, >0, g, >0, -1<y, >1.
GIR-GARCH (L,1): 7 =m+a,(|e|~n&s) +Biois (4)

where all parameters are as defined previously except 0<y, >1.

According to Hansen and Lunde (2005), these simple models are computationally efficient and
easier to interpret compared to complex volatility models.

2.2 Error Distribution of Volatility Models

To estimate the parameters in GARCH models, it is necessary to maximize a likelihood function
constructed under the conditional distribution of the error term (David, Dikko & Gulumbe,
2016). In the current study, the volatility of oil prices has been modelled using the Skewed
Student’s t-Distribution, Skewed Generalized Error Distribution, Normal Inverse Gaussian (NI1G)
distribution, and Odd Generalized Exponential Laplace Distribution innovations. The densities
distribution of these innovations are given as follows:

i. Skewed Student’s t-distribution (SSTD)

r(rﬂj
b 2

2
a(x;A.r)= (1+ id j (5)
c-ar(3)
r— z
i 2
[M} if X<—E
where, = 1-A is the scale parameter, and 4 is the skewness parameter.
TR g |

(Hlj
-2 g 2
Similarly, the constants p:4,1cr—, q=1+31*-p?% and c=
r-1 r
n(r—Z)F(Zj

authors that have modelled volatility with SSTD include: Wu & Shieh (2007); Ojirobe, Hussein
& David (2021), and Adenomon & ldowu (2023).
ii. Skewed Generalized Error Distribution (SGED)

. Some of the
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with the constraints, €,7>0, —1<1<1, —co<x<oo. Authors who have investigated the
applicability of the GARCH models with SGED distributed error on financial time series data
include: Su, Lee & Chiu (2014); Samson, Onwukwe & Enang (2020); and Cerqueti, Giacalone &

Mattera (2020).
iii. Normal Inverse Gaussian Distribution (NIG)

aéKl(aJau(x—y)z)
N Jr(x—,u)2

where, ¥ =.Ja?— %, u is a location parameter, « and S are shape parameters that control the

heaviness of density, & is a scale parameter, K is the modified Bessel function of the second
kind of order 1. The applications of the NIG distribution in GARCH modelling have been
reported in several studies including Forsberg (2002), Stentoft (2006), and Obalowu and David
(2023).

iv. Odd Generalized Exponential Laplace Distribution (OGELAD)

1, 1X= 19 exp —%
aﬁexp[—%jexp - 1_El Z;ﬂ[lexg[wjb

9(xma,p,6)= exp(&y +B(x—u)) (7)

2 2(x—uw)
g(xia. B u,0) =

20[1 B %J(;((—”{l—exp[—JX?T“LHDZ (8)

papfren 7] [

[

x| 1—exp| —

where a, f, 0> 0, -0 < 4, X > . Obalowu and David (2023) used the error distribution of
OGELAD in practical modelling of volatility of stock returns.

2.3 Stationarity and Heteroscedasticity Test
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Some of the available tests used to assess the
stationarity of time series data include:
Dickey-Fuller (DF) test, Augmented DF
(ADF) test, Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test, Phillips-Perron (PP) test,
Elliot-Rothenberg-Stock (ERS) test,
Variance Ratio (VR) test, among others.
This study has adopted the ADF test
proposed by Said and Dickey (1984), it tests
for unit root after removing autocorrelation
from the series. Unlike DF test, ADF test is
suitable for complex time series models. The
hypothesis of the presence of a unit root is
strongly rejected the more negative it is at
some level of significance (see \erma,
2021).

Heteroscedasticity is a particular pattern in a
model’s residuals whereby the amount of
variability is consistently greater for some
subsets of the residuals than for others
(Bock, 2023). In this study, the Lagrange
Multiplier (LM) test proposed by Engle
(1982) is employed because it provides a
formal statistical measure of
heteroscedasticity and also complements
other tests such as the graphical analysis and
Breusch-Pagan. The LM test tests the null
hypothesis there is no ARCH effect in the
residual. In order to determine whether
heteroscedasticity is present, the calculated
LM statistic is compared to the critical value
of the chi-squared distribution at a specific
significance level. The null hypothesis of
homoscedasticity is rejected if the LM
statistic is greater than the critical value.

2.4 Model Selection Criteria

Typical measures used to determine the size
of errors associated with a model by
considering the log likelihood and
mitigating overfitting through the inclusion
of a penalty term include Akaike
Information  Criterion (AIC), Bayesian
Information Criterion (BIC), Hannan-Quinn
Information Criterion (HQIC), and Shibata

Information Criterion (SIC). The
information criteria have been defined in the
routine in R package by Ghalanos (2022) as
follows;

AIC:%+2—q ©)
gic= 2L , 4109, (N) (10)
N N
o1 2qlog.[log. (N
HoIC— §L+ qoge[h?ge( )] 11)

where, L is the log likelihood value of the
fitted model, N is the length of series, and q
is the number of parameters in fitted model.

2.5 Forecast Evaluation

In this study, two most popular metrics: the
Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are used. They are
evaluated for the different fitted GARCH

models as follows;
T+N

1
MAE = N Z “9i,1+h|j
=1

T+N

1
RMSE =, | > | oni] (13)
=1

The model with the lowest values of these
metrics is usually preferred. In situations
where large errors are undesirable, the
RMSE is most preferred.

3.0 Results and Discussions

3.1 Data

The dataset comprises 5,271 daily
observations of Brent Crude Oil prices,
measured in  $US per Dbarrel. The
observations span from January 3, 2001, to
December 30, 2021. Brent crude serves as
the leading benchmark for crude oil and
used by many countries to assess the value
of their crude oil. The dataset has been
obtained from
https://ng.investing.com/indices. The plot of
the original data is given in Fig. 1

(12)
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The plot demonstrates a combination of
predominantly upward and downward trends
from early 2002 to approximately mid-2007.
Following this, there was an increase
observed in the crude oil index, peaking at
over $140 per barrel around 2008.
Subsequently, a consistent decrease in the
index value occurred, reaching around $40
per barrel in 2009. Since then, the price of
crude oil has shown a period of volatility,
influenced by various factors. Notably, the
COVID-19 pandemic had a significant
impact, leading to a sharp decline in the
price of Brent crude oil to its lowest value
(below $20) in early 2020. Since that time,

the index has shown signs of recovery,
continuing until December 2021. The plot
exhibits nonstationary characteristics.

The transformation of original price to
returns is supported in the literature because
of its attractive properties (see David et al.,
2016). Returns is computed using the
formula:

L =100xIn (EJ (14)
t-1

where, T, is the returns of an index in period
t, and Py is the price of an index in period t.

]
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2015 2020

Fig. 1: Time plot of crude oil prices
Table 1: Descriptive statistics of crude oil returns

Standard Jarque-
Index Minimum Maximum Mean .. Skewness Kurtosis Bera Test
Deviation (p-value)

Crude

oil -33.8036  20.7837 0.0196

2.5486 -0.8286

20.0502  0.0001

The crude oil index shows an average return
of 0.020 and a substantial volatility of 2.549.
The index exhibits a negative skewness of -
0.829 and a kurtosis of 20.050. The excess
kurtosis, calculated as the difference
between the index's kurtosis and the kurtosis

of a normal distribution, is 17.050. These
findings indicate that the index is highly
volatile, with significant fluctuations from
the average. The plot of the returns series is
given in Fig. 2.
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Fig. 2: Returns plot of crude oil price
Moreso, the results of the ADF test OGELAD error distribution, all parameter

presented in Table 2 provide evidence for
rejecting the null hypothesis of a unit root in
the returns of crude oil index, at both the 1%
and 5% significance levels.

Table 2: Unit root test (ADF test statistic)

Returns Crude oil
t-statistic -16.053
p-value 0.001
Decision Stationary

Table 3 displays the results of the hypothesis
tests concerning the existence of an ARCH
effect within the residuals of the returns for
the data. The results demonstrate that there
is sufficient evidence to reject the null
hypothesis, which suggests the absence of
an ARCH effect in the residuals of crude oil
price returns.

3.2 Model Fitting and Forecasting

The parameter estimates of the fitted
symmetric GARCH models using various
error distributions are shown in Table 4.
Except for the scale parameter of the

estimates in the EGARCH (1,1) model
exhibit significance at various levels.
Likewise, there are no sets of values for
which the EGARCH (1,1) model for the
SGED converges. Additionally, for the
specified error distributions, all parameter
estimates of the TGARCH (1,1) and GJR-
GARCH (1,1) models exhibit statistical
significance at the 0.1%, 1%, and 5% levels.
Notably, the leverage parameter is positive
in the asymmetric GARCH models
(EGARCH, TGARCH, and GJR-GARCH),
indicating that positive shocks have a greater
effect on volatility than negative shocks of
the same magnitude.

Table 3: Testing for ARCH effects

ARCH-
LM
Returns statistic p-value
Crude oil  931.04 0.0001

g@‘o
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Table 4: Estimation of asymmetric GARCH models
Error Estimates
Model Distribution a, B, " Skew Shape
EGARCH  SSTD 0.0193" -0.0601" 0.9868"  0.1245°  0.8849"  8.8634"
(1.1) NIG 0.0199" -0.0619" 0.9864~  0.1259°  -0.2062°  3.1209"
OGELAD  0.0313" -0.0616" 0.9623"°  0.0280" 0.0000 1.3060"
TGARCH  SSTD 0.0334" 0.0691" 09316~  0.4987°  0.8869°  8.7960"
(1.1) SGED 0.0365" 0.0717° 09284° 05104 08823  1.4862"
NIG 0.0344" 0.0700° 0.9306~  0.5075°  -0.2022°  3.0871"
OGELAD  0.0400" 0.0784" 0.9600°  0.8998°  0.0004°  0.0110"
GJR- SSTD 0.0787" 0.0353" 09134~  0.0714°  0.8923°  8.7882"
(C'iﬁ?CH SGED 0.0838" 0.0371"  0.9093"  0.0757°  0.8890°  1.4816"
NIG 0.0801" 0.0354"  0.9120°  0.0740°  -0.1907°  3.0484"
OGELAD  0.0926 0.0033" 0.8653°  0.0609°  0.0285°  0.0051"

Note: Estimated parameters are significant at: 5% level <*

significant ARCH effects were found in the

After fitting the different models, the ' g
standardized residuals have been checked residuals. ~ This means the ~ models
for remaining volatility patterns. The results successfully ~captured all the important
(shown in Table 5) confirm that no volatility patterns in the data.
Table 5: Heteroscedasticity test for volatility models
Standardized Residuals

Model Error Distribution Statistic p-value
EGARCH (1,1) SSTD 11.297 0.5037

NIG 10.824 0.5440

OGELAD 10.522 0.6007
TGARCH (1,1) SSTD 13.904 0.3069

SGED 12.632 0.3964

NIG 13.350 0.3441

OGELAD 13.143 0.3652
GJR-GARCH (1,1) SSTD 7.431 0.8279

SGED 7.079 0.8523

NIG 7.246 0.8409

OGELAD 7.356 0.8338

Table 6 presents the criteria used to
determine the best fitted model among the
competing models. Across all the fitted
models, the volatility models with OGELAD

(~N |

error distribution yield the highest log
likelihood and the lowest values for AIC,
BIC, and HQIC. Notably, the GIR-GARCH
(1,1) model emerges as the best fit for
R
"‘.
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capturing the volatility of crude oil returns, based on these criteria.
Table 6: Volatility model selection

Model Error Log AIC BIC HQIC
Distribution likelihood

EGARCH (1,1) SSTD -11290 4.2872 4.2984 4.2911
NIG -11295 4.289 4.3002 4.2929
OGELAD -897.8 0.3437 0.3537 0.3472

TGARCH (1,1) SSTD -11293 4.2885 4.2997 4.2924
SGED -11317 4.2973 4.3085 4.3012
NIG -11298 4.2903 4.3015 4.2942
OGELAD -6989.7 2.6552 2.6651 2.6586

GJR-GARCH SSTD -11305 4.2929 4.3042 4.2969

11) SGED -11328 4.3015 43127 4.3054
NIG -11310 4.2948 4.306 4.2987
OGELAD 105679 -40.0952 -40.085 -40.092

The volatility plot of the chosen model is
shown in Fig. 3. The fitted GJR-GARCH
(1,1) with OGELAD error distribution does
an excellent job of tracking real-world
volatility spikes, particularly during two key

periods:

mid-2019

— reflects

market

turbulence from global oil supply concerns

and early 2020 — the extreme volatility
caused by the COVID-19 pandemic. The
semblance between the chosen model's
predictions and actual market behaviour
during these crisis periods demonstrates its
strong predictive power.

[ s g
©
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©

o
N

20
1

Realized Volatility
GJR-GARCH(1,1) Volatility

z
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Fig. 3: Plot of realized and GJR-GARCH (1,1) volatilities for crude oil returns
. volatility persistence of 0.9295 and a half-
Also, Table 7 provides more results

life of 9.49. The relatively high volatility
persistence value of 0.9295 suggests that

regarding the fitted models. The selected
model,

GJR-GARCH (1,1), exhibits a
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past changes in volatility exert a substantial
influence on current volatility, with their
effects persisting over an extended period.
Specifically, the half-life of 9.49 indicates

that it takes approximately 9.49 days for the
volatility to decrease to half of its previous
rate.

Table 7: Volatility persistence and half-life

Model Error Distribution Persistence Half-life
EGARCH (1,1) SSTD 0.9868 52.17177
NIG 0.9865 50.8906
OGELAD 0.9623 18.03707
TGARCH (1,1) SSTD 1.00068 -1025.71
SGED 1.00014 -4951.4
NIG 1.00058 -1197.49
OGELAD 1.03844 -18.3763
GJR-GARCH (1,1) SSTD 1.0201 -34.8252
SGED 1.0221 -31.7393
NIG 1.0214 -32.6644
OGELAD 0.9295 9.486872

The evaluation of the forecasting performance
of the fitted models is given in Table 8.
Notably, the new error innovation (OGELAD)
outperforms other error distributions in terms
of forecast accuracy among the various error
distributions used in the GARCH models.

Significantly, over a 30-day horizon, the GJR-
GARCH (1,1) model with the OGELAD error
innovation stands out as the best-performing
model in terms of out-of-sample volatility
forecast accuracy.

Table 8: Forecasting performance of volatility models

Model Error Distribution MAE RMSE
EGARCH (1,1) SSTD 1.7265 1.7884
NIG 1.7258 1.7877
OGELAD 1.3618 1.5189
TGARCH (1,1) SSTD 1.6585 1.7236
SGED 1.6541 1.7195
NIG 1.6573 1.7225
OGELAD 0.6039 0.6784
GJR-GARCH (1,1) SSTD 1.8441 1.9019
SGED 1.831 1.8893
NIG 1.8423 1.9003
OGELAD 0.5096 0.5683

4.0 Conclusion

The study evaluated the effectiveness of the
OGELAD error distribution compared to three
existing non-normal distributions across three

asymmetric GARCH models—EGARCH
(1,1), TGARCH (1,1), and GJR-GARCH
(1,1)—using crude oil returns as the case
study. The findings revealed that all models
produced statistically significant parameters,

< > %
P
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and residual diagnostics confirmed the
successful  removal of  autoregressive
conditional heteroscedasticity. Among the
models, the GJIR-GARCH (1,1) model paired
with the OGELAD distribution consistently
outperformed others, achieving the highest
log-likelihood and the lowest AIC, BIC, and
HQIC values. In out-of-sample forecasting
over a 30-day period, this model also showed
superior accuracy, highlighting the practical
relevance of the OGELAD distribution in
modelling energy price volatility.

In conclusion, the study demonstrates that the
choice of error distribution significantly
influences the performance of GARCH-type
models in energy market applications. The
OGELAD distribution offers improved model
fit and Dbetter forecasting performance
compared to conventional non-normal
distributions. Its application in the context of
crude oil price volatility modelling presents a
viable approach for enhancing risk assessment
and derivative pricing strategies. It is therefore
recommended that future volatility modelling
in energy finance consider the incorporation
of the OGELAD distribution, particularly in
contexts where extreme events and
asymmetries are prevalent. Researchers are
also encouraged to explore the integration of
this distribution in multivariate and regime-
switching models, as well as in other energy-
related datasets, to generalize its applicability
and further improve forecasting precision.
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