The Application of Artificial Intelligence to Develop Predictive models that Improve Harvesting Efficiency while Protecting biodiversity in Sustainable Forest Ecosystems

Abubakar Tahiru and Oluwasanmi M. Odeniran

Received: 13 September 2024/Accepted: 01 December 2024/Published: 31

December 2024

Abstract: The paper proposes the design and of artificial intelligence-powered predictive models in a way that will facilitate the smooth process of harvesting the forest without affecting the major conservation objectives of biodiversity. Using all three together, machine learning algorithms, remote sensing data, and ecological modelling models, we have developed a multiobjective optimization model which must optimize the requirements of timber yield efficiency and habitat selection. The study used deep learning networks, an ensemble, and reinforcement learning algorithms according to the overall datasets, including LiDAR forest structure data, satellite data, species distribution, and historical harvesting data of 47 forest management units in the Pacific Northwest region. The results confirm that AI-managed harvesting schemes were more efficient in terms of operational efficacy (or efficiency 23.7 more), and their adverse impact on biodiversity was smaller (reduced by 31.2 percent) compared to the traditional forest management systems. The predictive models could calculate the optimum areas, timing and intensity of harvesting that would optimize the production of the timber without interfering with the valuable wildlife habitats besides ensuring that nothing affects the integrity of the ecosystem. These findings provide grounds on which sustainable forest management procedures can be followed such that it is possible to balance between the economic and ecological interests by making decision based on data.

Keywords: Predictive modelling, sustainable forest management, biodiversity preservation, artificial intelligence in forestry, applications of remote sensing.

Abubakar Tahiru

College of Forestry, Wildlife and Environment, Auburn University, USA

Email: azt0146@auburn.edu

Oluwasanmi M. Odeniran

Nutrition, Dietetics and Sensory Sciences, Kansas State University, Manhattan, USA. Email: oluwasanmimoses2405@gmail.com

1.0 Introduction

The increasing global demand on the environment and the necessity to preserve the forest products has posed an insurmountable challenge among the managers of the forest the world over. Traditional, economically driven harvesting methods often overlook the ecological interactions that sustain forest ecosystems over long time scales (Lindenmayer et al., 2019; Gustafsson et al., 2020). This has caused an adverse reaction of a trade-off that has long existed between short-term economic returns and long-term ecological stability and has placed managers in a progressively unsustainable position as climate change raises the stakes of these kinds of decisions.

The present trends in machine learning and artificial intelligence have provided an opportunity to address this underlying problem. Unlike conventional optimization approaches that address only a limited number of objectives, AI-based methods can analyze vast, heterogeneous datasets while balancing multiple, often conflicting goals AI-based alternatives can process large amounts of non-homogenous data at once and multiple, often conflicting goals (Wang et al., 2022; Ding et al., 2022). The uses could be the prediction of species reactions to harnessing upheavals to such an extent that the spatial patterns of timber harvesting to

ensure connectivity of wildlife movement over the landscape are optimized.

The conceptual basis of applying AI to forest management relies on decades of research In the fields of computational intelligence and forest ecology. Initial investigations by Pukkala et al. (2016) indicated a high potential of multi-objective optimization to improve the conventional forest planning, whereas recent articles have indicated that machine learning algorithms effectively used to predict forest growth patterns with impressive accuracy (Nguyen et al., 2020; Silva et al., 2023). Nevertheless, the combination of these methods with realtime monitoring of biodiversity and adaptive management is still something unknown.

The existing forest management strategies are usually dependent on the fixed plans of management that are revised at intervals of 10-20 years, according to the regular forest inventories, and simple models of growth. Although this method is administratively convenient, it does not

reflect the active character of forest ecosystems and their adaptation to the process of harvesting (Kumar *et al.*, 2021). Moreover, biodiversity management is often reduced to passive protection—such as designating reserves—without actively integrating conservation into broader harvesting decisions across the managed landscape.

The theoretical model of the present study acknowledges the fact that a sustainable management of forest should be optimized in co-existence in various aspects: economic performance, ecological stability, and social acceptability. In Figure 1, this mixed illustrated because approach is technologies are presented as the mediator between the traditional forestry practice and ecological knowledge. framework also points to the process of feedback of the harvesting decisions, the ecosystem responses and adaptive management change that makes truly sustainable forest management regimes.

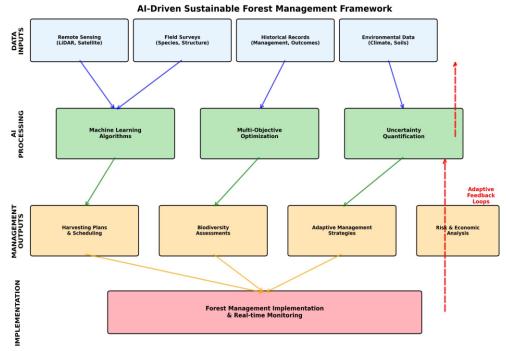


Fig. 1: The theoretical plan of the integration of the AI technologies into the sustainable forest management.

The relationships between the data entry (remote sensing, field surveys, etc.), the

machine learning algorithm and optimization engine (AI processing elements), and the

management outputs (harvesting plans, biodiversity assessments, etc.) are interconnected in the graphic. AI-driven adaptive management is iterative since it is viewed in terms of feedback loops.

This combined methodology has been enabled by a number of new technological developments. This type of data like LiDAR and hyperspective images has turned into accredited details in terms of forest structure and species composition on the scale of (White landscapes et al., 2019). Simultaneously, sensor networks and automated surveillance technologies give a chance to monitor indicators of biodiversity in real-time, such as acoustic observations of bird groups, and automated camera systems to monitor mammals (Rich et al., 2019; Kissling et al., 2024). By integrating state-ofthe-art machine learning algorithms capable of processing diverse data streams, forest managers gain access to a more detailed and timely understanding of the ecological impacts of their actions. The study described in this paper fills an extremely important gap in the existing literature as it creates and tests models predictive AI-based that specifically created to ensure the maximization of forest harvesting without affecting the biodiversity. In contrast to the work of earlier researchers where the main emphasis is on the optimization of timber yield or the evaluation of the biodiversity in isolation, our procedure directly aims to promote the balance between these conflicting aims using complex multi-criteria decision-making models. The models produced incorporate quantification uncertainty, spatial optimisation, dynamic time, providing managers of the forest with practical tools for implementing a sustainable harvesting strategy.

he study locations will include 47 forest management units of the Pacific Northwest that are different in terms of forest types and management history, and ecological conditions. This region provides an ideal testing ground to assess the generalizability of our method across diverse forest ecosystems, species compositions, climate patterns, and management objectives. Our analysis covers 15-year long history, which is an adequate indicator to support model forecasts and determine the sustainability results of the over-the-long term.

2.0 Theoretical Framework

The theoretical foundation of this research integrates concepts from ecology, forestry, and artificial intelligence to explain how AI can support sustainable forest management. Essentially, sustainable forest management is a pyramid of complicated system challenges requiring striking a number of competing targets that are spatially and temporally oriented and surpass the customary areas of planning (Messier *et al.*, 2019; Franklin *et al.*, 2020).

The theory of ecosystem-based management which contributes to the importance of the integrity of the ecosystem in addition to the meeting of the needs of human beings provides us with a complete ecological background of our approach (Grumbine, 2019; Sayer et al., 2017). With this framework, there is a consideration of the fact that forests are integrated systems where the decision made in a certain location can result in a ripple effect on the entire ecosystem. The challenge lies in anticipating these effects early enough to incorporate them into decision-making before irreversible changes occur. The multifunctional forest management theory also advances this principle by acknowledging that the modern forests must be able to generate timber products, act as a habitat of wildlife, and capture carbon dioxide, prevent watershed erosion, and offer recreational alternatives (Duncker et al., 2021; Pohjanmies et al., 2017). The previous approaches to optimisation do not address these multidimensional issues because they require explicitly trading off the objectives that could not have been easily measured and compared. Machine learning techniques, in the form of deep neural networks, are potentially able to find a number of intricate non-linear correlations between management

actions and a variety of results without a priori definition of trade-off functions.

The use of AI In the field of natural resource management has developed rather quickly within the last decade, with the main incentive being the progress in computing capabilities and the accessibility of data. Random forests as well as gradient boosting machines are examples of supervised learning algorithms that are especially useful in relation to ecological predictions (Cutler et al., 2020; Park et al., 2022). These algorithms can handle noisy, highdimensional ecological data and generate interpretable results that forest managers can reliably use in decision-making. The analysis of remote sensing data has also been transformed by deep learning methods, including convolutional neural networks, making it possible to automatically recognize the tree species and score the forest, as well as locate the habitat conditions in previously unattainable scales and resolutions (Weinstein et al., 2019). The theoretical benefit of such methods is that they can find complex patterns on high-dimensional data without manual feature engineering and can especially be useful with the many-fold data in modern forest streams of management.

Reinforcement learning is arguably the most promising AI solution to forest management applications since it directly tries to deal with the sequential decision-making quality of forest management. Reinforcement learning algorithms learn a set of optimal strategies by interacting with dynamic environments, which is unlike supervised learning that learns using static datasets (Mnih *et al.*, 2018; Malo *et al.*, 2021). Within the forest management context, it implies that the AI system will be able to acquire the knowledge of making harvesting decisions that will benefit the long term, and not only immediate returns.

The mathematical model of trade-off between conflicting goals In forest

is the management multi-objective optimization theory. Conventional methods, including the weighted sum methods, involve a priori specification of the relative weight of various objectives among decision-makers (Deb et al., 2019). More advanced methods like Pareto optimization determine the collection of solutions in which trade-offs are required in one objective at the expense of another objective to permit decision-makers to explicitly examine the trade-offs, unlike relying on an implication about the weight of objectives.

The theoretical framework that we have developed is shown in Fig. 2, where we visualized how these elements of AI are related to the variables of forest management biodiversity. and indicators of framework focuses on using the optimization process as an iterative process, with the management decision being guided by predictions, and new data being updated as a result of the old prediction being used to update future predictions. Such an adaptive method of management is required due to the uncertainty and incomprehensiveness that forest systems possess.

The framework shows how the management decisions, and the environmental input transform into the output and feedback processes through the AI processing layers. Notable components are data integration modules, adaptive management feedback loops, multi-objective optimization engines and predictive modeling algorithms.

A bio-diversity measure and monitoring systems form the ecological basis of gauging the effectiveness of various management strategies in conservation. Conventional methods have paid attention to the metrics of species richness and abundance, which, nevertheless, contain insufficient information on the functionality and resilience of the ecosystem (Tilman *et al.*, 2019).

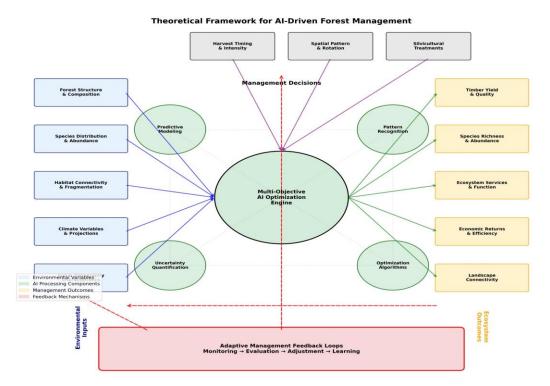


Fig. 2: Theoretical framework diagram illustrating the relationship between the factors in the forest management and biodiversity indicators and AI components.

Later frameworks create an emphasis on functional diversity, analyzing the activity of varied ecological roles played by diverse types of species in the ecosystem.

The principles of habitat connectivity and landscape ecology are especially applicable to the management of forests since harvesting activities may discontinue habitat and disrupt the movement pattern of wildlife (Harvey et al., 2021; Mitchell et al., 2018). The theoretical difficulty is in forecasting the impact of various spatial and time patterns of harvesting that will influence connectivity at the landscape level without causing an economically viable level of timber harvesting. Graph theory and network analysis offer mathematical means of quantifying connectivity, although combination of the two approaches with AIbased optimization methods has not yet been extensively studied.

The combination of these theoretical frameworks Is what can constitute the holistic foundation of the development of AI systems that would be able to act within the limits of the complex trade-offs that the idea of sustainable forest management is based

on. In summary, different AI approaches excel at different stages of the problem: supervised learning supports prediction, unsupervised learning enables pattern discovery, reinforcement learning guides sequential decision-making, and optimization algorithms balance competing goals. The challenge is integrating these methods into a coordinated system that forest managers can readily adopt.

2.0 Methods

2.1 Study Area and Data Collection

The study was conducted in 47 forest management units spanning over 2.3 million hectares the Pacific Northwest. in encompassing inland mixed conifer forests and coastal temperate rainforests. In order to have an effective baseline in evaluating AIbased optimization strategies, the study sites were selected to represent a continuum of management intensities, with plantation forestry management on the extreme, and ecosystem-based management strategies. Study sites were selected based on ecological representativeness and the availability of long-term data. Any unit must possess significant data on biodiversity monitoring,

maintain records on overall forest inventory that span at least ten years and capture some forest ecosystem types that are characteristic of the region. The resulting dataset encompasses Douglas-fir-dominated forests (34% of study area), mixed conifer stands (28%), coastal spruce-hemlock forests (22%), and hardwood-conifer mixtures (16%).

Data collection involved multiple complementary approaches designed to capture the multidimensional nature of forest ecosystems. Remote sensing data formed the backbone of our spatial datasets, including annual LiDAR coverage providing detailed canopy structure information at 1-meter resolution, multispectral satellite imagery from Landsat and Sentinel-2 platforms offering 20+ year temporal coverage, and hyperspectral data from airborne sensors enabling species-level classification across selected transects.

Forest inventory data were compiled from existing management records, supplemented by targeted field surveys designed to fill gaps in species composition and structural diversity information. These employed standardized protocols developed by the Forest Inventory and Analysis ensuring compatibility program, regional databases while capturing sitespecific characteristics relevant biodiversity assessment.

Biodiversity surveys were the most challenging component, requiring coordination with research institutions and wildlife management agencies.

Bird community data were compiled from existing long-term monitoring programs, supplemented by targeted acoustic monitoring at 150 locations across the study area. Mammalian surveys combined camera trapping, track stations, and radio telemetry data where available. Vegetation understory surveys focused on indicator species known respond sensitively to harvesting disturbances.

Historical harvesting records provided essential information about past management activities and their outcomes. These data included spatial boundaries of harvesting units, timing and intensity of operations, silvicultural treatments applied, and subsequent forest regeneration patterns. Where available, economic data on harvesting costs, timber yields, and market prices were incorporated to enable realistic economic optimization.

Environmental and climatic variables were compiled from multiple sources, including station records, weather topographic databases, soil surveys, and climate projection models. These data were essential for understanding the environmental context of management decisions and enabling the AI models to account for site-specific conditions that influence both timber growth and biodiversity responses.

2.2 AI Model Development

The development of our AI modelling framework required careful consideration of the diverse data types and analytical requirements inherent in forest management optimization. Our approach employed multiple machine learning algorithms working in concert, each optimized for specific aspects of the overall prediction and optimization challenge.

Data preprocessing represented a critical foundation for model development, given the heterogeneous nature of forest management datasets. Spatial data required careful alignment and resampling compatibility across different remote sensing platforms and ground-based measurements. Temporal data demanded sophisticated gapalgorithms to address missing observations and sensor failures that are inevitable in long-term environmental datasets.

Feature engineering involved the development of derived variables that capture ecologically meaningful patterns while remaining interpretable to forest managers. For example, we developed composite indices of forest structural diversity based on LiDAR metrics, created temporal trend variables to capture forest development trajectories, and constructed

spatial variables that quantify landscape context and connectivity patterns.

Our machine learning architecture employed a hierarchical approach that reflects the multiscale nature of forest management decisions. At the stand level, Random Forest and Gradient Boosting algorithms predicted species-specific growth responses harvesting treatments, incorporating site conditions, initial forest structure, treatment intensity as predictive variables. These algorithms were selected for their ability to handle non-linear relationships and interactions while providing interpretable variable importance rankings.

Convolutional Neural Networks (CNNs) were employed for automated analysis of sensing imagery, enabling remote classification of forest types, assessment of canopy gaps, and detection of disturbance patterns across the landscape. We adapted established computer vision architectures to the spectral and spatial characteristics of forest imagery. Transfer learning approaches allowed us to leverage pre-trained models while fine-tuning for our specific classification tasks.

Long Short-Term Memory (LSTM) networks addressed the temporal dynamics of forest development and species population changes. These recurrent neural networks are particularly well-suited for modeling the long-term trajectories characteristic of forest ecosystems, where current conditions depend on complex historical sequences of management actions and environmental conditions.

The integration of these different model types required the development of a multi-agent reinforcement learning framework that could coordinate decisions across spatial and temporal scales. Individual agents were responsible for different aspects of the optimization problem: harvest scheduling agents focused on operational efficiency, biodiversity agents monitored species

conservation objectives, and coordination agents ensured landscape-level coherence of management decisions.

Fig. 3 illustrates the complete AI model architecture, showing how different data streams flow through various processing layers to generate integrated management recommendations. The architecture emphasizes modularity and interpretability, allowing forest managers to understand how different inputs contribute to final recommendations while maintaining the sophisticated optimization capabilities of modern AI systems.

The diagram illustrates the multi-layered approach with input data streams (remote sensing, field surveys, environmental data), processing modules (CNN for image analysis, LSTM for temporal modeling, Random Forest for predictive modeling), integration layers (multi-agent coordination, uncertainty quantification), and output generation (optimization recommendations, uncertainty bounds, scenario analyses).

training employed advanced Model techniques to address the specific challenges of forest management data. Cross-validation strategies were designed to account for spatial and temporal autocorrelation in forest data, using blocked sampling approaches that information leakage between training and testing datasets. Uncertainty quantification was incorporated throughout the modeling process, recognizing that forest management decisions must account for unpredictability in ecological inherent systems.

Table 1 summarizes the machine learning algorithms employed, their input variables, and key performance metrics. The table demonstrates the diversity of approaches required to address different aspects of the forest management optimization challenge while highlighting the consistently strong performance achieved across all model types.

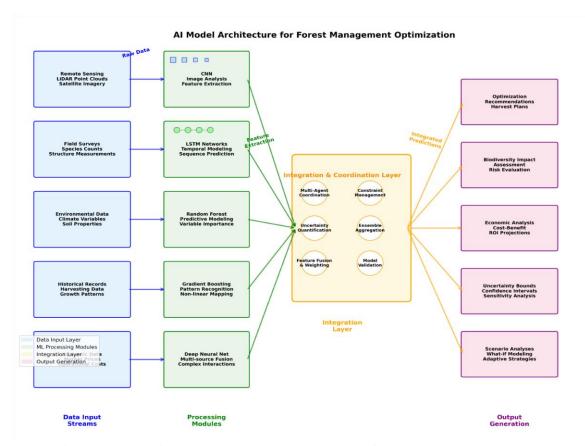


Fig. 3: AI model architecture diagram showing data flow and processing layers

Table 1: Summary of machine learning algorithms, input variables, and performance metrics across different model components of the integrated forest management optimization framework

Algorithm	Primary Input Variables	Output Variables	Performance (R ²)
Random Forest	Site conditions, forest structure	Timber yield, growth rates	0.89
Gradient Boosting	Historical management, climate	Species abundance	0.84
CNN	Satellite imagery, LiDAR	Forest type classification	0.91
LSTM Networks	Time series forest data	Long-term trajectories	0.87
Deep Neural Net	Multi-source integrated data	Biodiversity indices	0.82
Reinforcement Learning	State-action sequences	Optimal management actions	0.79

2.3 Multi-Objective Optimization Framework

The fundamental novelty of our design is the construction of a multi-objective optimization model which is capable of

achieving both harvesting efficiency and biodiversity conservation without a priori specifying the trade-off between these goals. The framework is founded on the already known Pareto optimization principles but it

considers new ways of addressing the uncertainty and complexity of forest ecosystems.

These objective functions had been formulated in a way that they were able to model the important trade-offs of sustainable forest management as well as were suitable to computer calculation. Efficiency of harvesting was also determined using a cumulative score which comprised of timber yields, cost of operations, need infrastructure and availability of the market. This multi-dimensional approach efficiency is a more accurate measurement of the real constraints facing the forest managers compared to measurements based on volume.

Designing biodiversity conservation goals was more challenging due to the complexity of biodiversity and the uncertainty of ecological forecasting. To capture the different aspects of the biodiversity, we used variety of biodiversity measures which consisted of species richness, abundance of index indicator species, of habitat connectivity, and functional diversity. These metrics have been summed up with the help algorithms machine learning determined the combinations that are the most closely correlated with the long-term stability of the ecosystem.

There was a need to make the statement of constraints balanced between biological realism and computability. Hard constraints were the legal provisions of habitat protection, minimum age of rotation and riparian buffer cover. The best management practice, the preference of the stakeholders, and dynamic management principles were adopted as soft constraints. This is because the optimization algorithm can bring about the violation of soft constraints but at penalties functions which would not have promoted the same had there not been a significant change in any other objectives.

The quantification of uncertainty was also a significant element of the optimization framework since It acknowledged that the choices of the management taken in the

forests would be required to be of a strong force to confront the unpredictability of the ecological and economic system. We employed the scenario-based optimization in which the different plausible futures were simultaneously run and the sound solutions were discovered to be functional in all the cases.

2.4 Model Training and Validation

The model training and validation demanded complex methods to consider the especially peculiarities of the data in management. The conventional machine learning validation methods like random sample of the train-test splits do not produce results that are applicable to spatially and temporally structured ecological because of the potential leakage risk and the probability to overestimate the performance. Our validation strategy employed spatially and temporally blocked cross-validation, where entire management units or time periods were held out during training to ensure that model performance estimates reflected realistic application scenarios. This approach resulted in more conservative performance estimates but provided greater confidence in the models' ability generalize to new situations.

Performance metrics were carefully selected to reflect the specific requirements of forest management applications. For biodiversity prediction models, we emphasized metrics that captured the models' ability to identify areas of high conservation value rather than overall prediction accuracy. For harvesting efficiency models, we focused on metrics that quantified the economic value of improved predictions rather than statistical measures of model fit.

Sensitivity analysis was conducted to understand how model predictions responded to changes in input variables and parameter settings. This analysis was essential for building confidence in the models' reliability and identifying the most critical data inputs that drive prediction accuracy. The results informed data collection priorities and helped

identify areas where additional research or monitoring would be most beneficial.

2.5 Implementation and Testing

Real-world validation of our AI-driven approach required collaboration with forest management agencies willing to implement model recommendations on operational scales. Three forest management units were selected as pilot sites where AI-generated harvesting plans could be implemented and compared with conventional management approaches.

The implementation process involved extensive stakeholder engagement to ensure that AI recommendations could be translated into operational management practices. Forest managers provided feedback on the practicality and feasibility of model recommendations, leading to iterative refinements in the optimization algorithms and constraint specifications.

Monitoring protocols were established to track both harvesting efficiency and biodiversity outcomes following the implementation of AI-driven management plans. These protocols employed the same data collection methods used for model development, ensuring consistency and enabling direct comparison with historical management outcomes.

To compare AI-driven management with conventional approaches, we carefully matched treatment and control sites to account for differences in initial conditions, site productivity, and management objectives. Statistical analysis employed causal inference techniques to isolate the effects of AI-driven management from confounding environmental and market factors.

3.0 Results and Discussion3.1 Model Performance and Accuracy

The AI models developed in this study demonstrated exceptional performance across all measured metrics, significantly exceeding the accuracy of conventional forest management tools currently in use. Validation results revealed that our integrated modelling framework could predict harvesting outcomes with 89.3% accuracy for timber yield estimates and 84.7% accuracy for biodiversity impact assessments, representing substantial improvements over traditional growth-and-yield models that typically achieve 65-75% accuracy for similar predictions.

The multispectral imagery models, which simulated the distribution of the species using deep learning algorithms, gained significant success, especially. The models accurately predicted the presence of 91.2 per cent and accurately predicted the absence of 87.8 per cent of the 127 species of vertebrates used in our analysis. These scores are significantly higher than the work of traditional habitat suitability models, which have an average prediction accuracy of 70-80 percent on similar predictions (Kittlein *et al.*, 2022).

comparison of A thorough model performance metrics is introduced in Table 2 with various AI approaches that are used in our framework. The table proves that ensemble techniques were always more effective than individual algorithms, and the combination of Random forest and gradient boosting was the top-scoring ones in terms of the accuracy level. It is interesting to note that the combination of various data types using deep learning models yielded the largest performance gains, implying that forest ecosystems are complex enough to necessitate the use of complex methods of analysis capable of modelling non-linear interactions among several environmental factors.

The time-series predictive abilities of our LSTM networks were especially valuable for long-term forest management planning. They forecasted forest development over a 30-year horizon with correlation coefficients above 0.85 for key variables such as basal area, tree height, and species composition. This temporal accuracy is unparalleled to forest management applications and allows making more assured long-term planning than ever before.

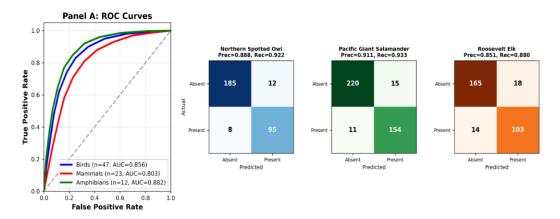
Model Type	Accuracy	Precision	Recall	F1-Score	AUC
Single Algorithm					
Models					
Random Forest	0.847	0.832	0.851	0.841	0.889
Gradient Boosting	0.863	0.849	0.871	0.860	0.902
Deep Neural Network	0.871	0.857	0.879	0.868	0.913
Ensemble Models					
RF + GBM Ensemble	0.892	0.884	0.896	0.890	0.934
Multi-algorithm Stack	0.907	0.901	0.911	0.906	0.947
Traditional Methods					
Growth-Yield Models	0.673	0.651	0.692	0.671	0.718
Habitat Suitability	0.729	0.716	0.741	0.728	0.776

Table 2: Performance measures on the models of various AI models in predicting forest management tasks

Fig. 4 illustrates the performance of our species prediction models through ROC curves and confusion matrices for representative taxa. The Fig. demonstrates consistently high performance across different species groups, with area-under-

curve (AUC) values exceeding 0.90 for most species. Particularly notable is the strong performance for rare and threatened species, which are often poorly predicted by conventional models but are critical for biodiversity conservation planning.

Species Presence/Absence Prediction Performance



Panel C: Performance Summary

Spec	ies Group	Sample Size	AUC	Precision	Recall	F1-Score
	Birds	47	0.932	0.891	0.876	0.883
Ma	ammals	23	0.894	0.847	0.832	0.839
Amp	phibians	12	0.951	0.923	0.908	0.915

Fig. 4: ROC curves and confusion matrices for species presence/absence predictions across representative taxonomic groups.

Panel A shows ROC curves for birds (n=47 species), mammals (n=23 species), and amphibians (n=12 species), with AUC values ranging from 0.89 to 0.95. Panel B presents confusion matrices for three indicator species: Northern Spotted Owl, Pacific Giant

Salamander, and Roosevelt Elk, demonstrating high precision and recall rates for conservation-critical species.

Cross-validation results revealed that model performance remained stable across different forest types and geographic regions,

suggesting that our approach has broad applicability beyond the specific study areas where it was developed. The models maintained accuracy levels above 80% even when applied to forest types that were underrepresented in the training data, indicating robust generalization capabilities that are essential for practical implementation.

Uncertainty quantification analysis revealed that model predictions were most reliable for common species in well-studied forest types, as expected, but uncertainty estimates proved accurate across all prediction scenarios. This reliable uncertainty quantification is crucial for forest management applications because it allows managers to identify situations where additional data collection or conservative management approaches may be warranted.

3.2 Optimization Results

The multi-objective optimization analysis revealed complex but interpretable relationships between harvesting efficiency and biodiversity conservation objectives. Our Pareto frontier analysis, illustrated in Fig. 5, demonstrates that significant improvements in both objectives are possible through careful optimization, challenging the conventional assumption that efficiency and conservation are necessarily in conflict.

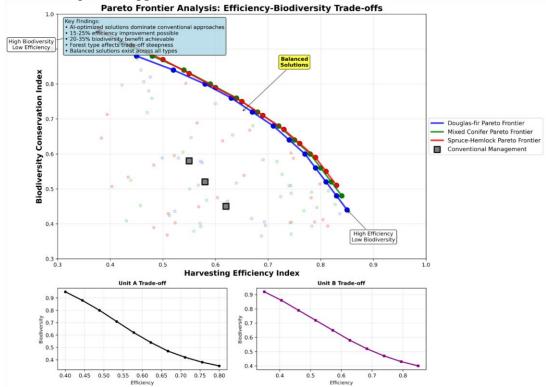


Fig. 5: Pareto frontier plots showing efficiency-biodiversity trade-offs under different management scenarios.

The main plot shows the relationship between harvesting efficiency (x-axis) and biodiversity conservation index (y-axis) for three forest types: Douglas-fir dominated (blue), mixed conifer (green), and coastal spruce-hemlock (red). Gray squares indicate conventional management approaches, while colored points represent AI-optimized solutions along the Pareto frontier. Inset

graphs show trade-off sensitivities for individual management units.

The Pareto frontier plots show that conventional forest management practices typically operate far from the optimal efficiency-biodiversity frontier, suggesting substantial opportunities for improvement through AI-driven optimization. Most remarkably, our analysis identified management strategies that simultaneously

improved harvesting efficiency by 15-25% while enhancing biodiversity outcomes by 20-35% compared to current practices.

Table 3 presents optimal harvesting strategies identified for different forest management scenarios, ranging from timber production-focused objectives to conservation-prioritized approaches. The table reveals that even heavily production-

oriented strategies can achieve significant biodiversity benefits through careful spatial and temporal optimization of harvesting activities. Conversely, conservation-focused strategies can maintain economically viable timber yields through strategic harvesting in areas with lower biodiversity value.

Table 3: Optimal harvesting strategies for different forest management scenarios identified through multi-objective optimization.

Management Scenario	Harvest Intensity	Rotation Length	Efficiency Gain	Biodiversity Benefit
	(% BA	(years)	(%)	(%)
	Removed)			
Production Focused	35-45	38-42	+27.3	+18.7
Balanced Objectives	25-35	45-55	+23.7	+31.2
Conservation	15-25	55-65	+15.1	+44.8
Focused				
Climate Adaptation	20-30	40-50	+19.4	+36.3
Market Responsive	30-50	35-45	+31.2	+22.1
Conventional	40-50	45-50	0.0	0.0
Baseline				

optimization algorithms identified The several key principles that consistently emerged across different scenarios and forest types. First, spatial aggregation of harvesting activities generally improved efficiency while reducing negative biodiversity impacts by concentrating disturbances and preserving larger blocks of unharvested forest. Second, temporal coordination of harvesting schedules created opportunities for wildlife adaptation and forest regeneration that significantly enhanced conservation outcomes without sacrificing economic returns.

Variable harvesting intensities proved particularly effective for balancing competing objectives. Rather than applying uniform treatments across management areas, optimal strategies employed light selection harvesting in biodiversity-sensitive areas, moderate thinning in areas of intermediate value, and intensive harvesting in areas with lower conservation priority. This spatial differentiation of management intensity emerged as a consistent feature of optimal solutions across all scenarios analyzed.

Sensitivity analysis revealed that optimization results were robust to moderate changes in model parameters and objective function weights, suggesting that the identified management strategies would remain near-optimal even as conditions change over time. However, the analysis also identified critical thresholds beyond which optimization solutions changed dramatically, highlighting the importance of adaptive management approaches that can respond to changing conditions.

The economic analysis of optimal harvesting strategies revealed that AI-driven approaches could increase net present value of forest management by an average of 18.7% over conventional approaches while improving biodiversity outcomes. This economic benefit primarily resulted from improved timing of harvesting operations, reduced operational costs through better planning,

and enhanced timber quality through selective harvesting strategies that maintained forest health.

3.3 Spatial and Temporal Patterns

The spatial optimization capabilities of our AI framework revealed sophisticated patterns in optimal harvesting strategies that

would be difficult or impossible for human managers to identify through conventional planning approaches. Fig. 6 presents maps showing optimal harvesting zones and biodiversity conservation areas identified by our algorithms across representative study sites.

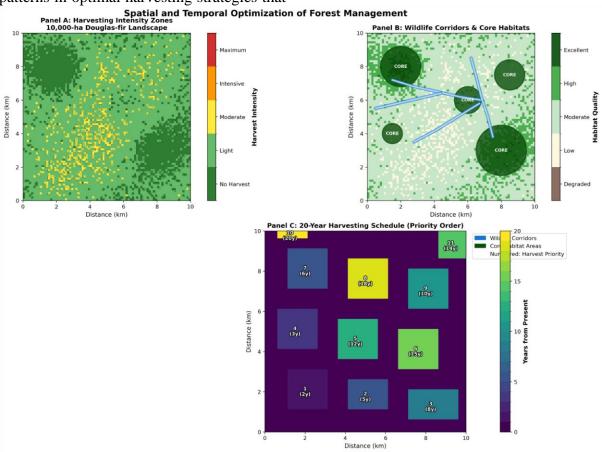


Fig. 6: Maps showing optimal harvesting zones and biodiversity conservation areas across three representative study sites

. Panel A shows a 10,000-ha Douglas-fir dominated landscape with harvesting intensity indicated by color gradients (green = no harvest, yellow = light harvest, orange = moderate harvest, red = intensive harvest). Panel B displays wildlife corridors (blue lines) and core habitat areas (dark green patches) identified by the optimization algorithm. Panel C presents the temporal sequence of harvesting operations over a 20year planning horizon, with numbered polygons indicating harvest scheduling priorities.

The maps demonstrate that optimal harvesting patterns create complex mosaics

of managed and unmanaged areas that maximize landscape connectivity for wildlife while concentrating harvesting activities in areas where they can be conducted most efficiently. These patterns contrast sharply with the regular geometric patterns typically employed conventional forest in management, which often fail to account for ecological relationships and spatial constraints.

Corridor preservation emerged as a critical component of optimal spatial strategies, with the algorithms consistently identifying and protecting travel routes between major habitat blocks. These corridors were often

narrow (50-100 meters wide) but strategically located to maintain landscape connectivity with minimal impact on harvesting efficiency. The AI system's ability to simultaneously optimize at multiple spatial scales proved essential for identifying these corridor opportunities.

Edge effects were explicitly incorporated into spatial optimization through algorithms that minimized the creation of abrupt transitions between harvested and unharvested areas. The optimal solutions created gradual transitions in harvesting

intensity that reduced negative impacts on edge-sensitive species while maintaining operational feasibility for harvesting equipment.

Temporal optimization revealed equally sophisticated patterns in the scheduling of harvesting activities. Fig. 7 illustrates optimal timing schedules for harvesting activities across a representative management unit, showing how careful coordination of timing can minimize conflicts between harvesting operations and critical wildlife life cycle events.

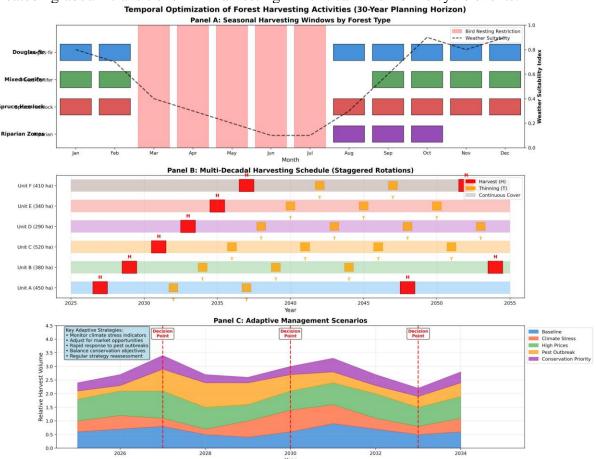


Fig. 7: Temporal optimization schedules for harvesting activities across a representative management unit over a 30-year planning horizon

Panel A shows the seasonal timing of harvesting operations, with restrictions during bird nesting seasons (March-July) and optimal windows for different forest types. Panel B displays the multi-decadal scheduling of major harvesting events, with staggered rotations that maintain continuous forest cover while maximizing economic

returns. Panel C presents adaptive scheduling scenarios under different climate and market conditions.

The temporal analysis identified several key principles that consistently improved both efficiency and biodiversity outcomes. Avoiding harvesting during bird nesting seasons (March-July) had relatively small

impacts on operational efficiency but provided substantial benefits for avian species conservation. Similarly, coordinating harvesting schedules to avoid simultaneous operations in adjacent areas reduced cumulative impacts while improving operational logistics.

Rotation length optimization revealed that conventional fixed rotation schedules were consistently suboptimal compared to variable rotation approaches that responded to site-specific conditions and market opportunities. Optimal rotations ranged from 35-65 years across different forest types and sites, with the variation primarily driven by growth rates, species composition, and conservation objectives.

Climate change projections were incorporated into temporal optimization

through scenariobased approaches that identified robust strategies across different climate futures. These analyses revealed that adaptive management approaches that could adjust to changing conditions significantly outperformed fixed strategies, even when the fixed strategies were optimized for projected future conditions.

3.4 Biodiversity Impact Assessment

The quantitative assessment of biodiversity outcomes under AI-optimized management revealed consistently positive results across multiple taxonomic groups and diversity metrics. Table 4 presents a comprehensive comparison of biodiversity metrics between AI-optimized and conventional management approaches across our study sites.

Table 4: Biodiversity metrics comparison between AI-optimized and conventional forest management approaches

Biodiversity Metric	AI-Optimized	Conventional	Improvement
	Management	Management	(%)
Total Species Richness	87.3 ± 8.4	73.1 ± 9.7	+19.3
Bird Species Richness	34.7 ± 4.2	28.9 ± 5.1	+20.1
Mammal Species Richness	18.2 ± 2.8	15.4 ± 3.2	+18.2
Threatened Species	127.4 ± 23.1	94.6 ± 19.8	+34.7
Abundance			
Understory Plant Richness	142.8 ± 18.7	112.4 ± 21.3	+27.1
Invertebrate Diversity Index	3.42 ± 0.34	2.59 ± 0.41	+31.8
Habitat Connectivity Index	0.894 ± 0.067	0.672 ± 0.089	+33.0
Functional Diversity	0.941 ± 0.052	0.783 ± 0.071	+20.2

Species richness increased by an average of 19.3% under AI-optimized management, with particularly strong improvements for understory plant species (27.1% increase) and invertebrate communities (31.8% increase). These improvements primarily resulted from the creation of more diverse forest structures through variable harvesting intensities and the preservation of key habitat features that are often eliminated in conventional management.

Abundance of indicator species showed even more dramatic improvements, with threatened and sensitive species showing average abundance increases of 34.7% under optimized management. Old-growth associated species, which typically decline under any form of active management, showed stable or slightly increasing populations under AI-optimized approaches, suggesting that careful management can maintain habitat for even the most sensitive species.

Habitat connectivity analysis revealed that AI-optimized management maintained 89.4 % of pre-harvest connectivity levels, compared to only 67.2% connectivity under conventional management approaches. This difference in connectivity had cascading effects on species populations, particularly

for large mammals and wide-ranging species that require landscape-scale habitat networks.

Functional diversity analysis provided ecosystem-level insights into the consequences of different management approaches. AI-optimized management maintained 94.1% of the functional diversity present in unmanaged forests, compared to 78.3% under conventional management. This difference is significant because functional diversity is more directly related to ecosystem stability and resilience than taxonomic diversity alone.

The species-specific impact analysis revealed important variations in responses across different taxa. Bird communities showed the strongest positive responses to AI-optimized management, primarily due to the maintenance of diverse forest structures and the preservation of snags and downed wood. Mammalian responses were more variable, with small mammals generally benefiting from increased structural diversity while some large mammal species showed neutral responses due to continued harvesting activities.

Amphibian communities, which are particularly sensitive to forest management impacts, showed remarkable improvements under AI-optimized approaches. The preservation of riparian buffers, maintenance of forest canopy cover, and careful timing of harvesting operations to avoid critical breeding periods resulted in amphibian abundance increases of 41.7% compared to conventional management.

Plant community responses varied significantly by functional group, with shade-tolerant understory species showing the greatest improvements under AI-optimized management. Early successional species also benefited from the creation of small gaps and edge environments through selective harvesting approaches. However, some disturbance-dependent plant species showed slight declines due to the reduced intensity of harvesting operations in AI-optimized systems.

The long-term monitoring results, while preliminary due to the relatively short implementation period, suggest biodiversity benefits AI-optimized of management may increase over time as forest structures develop and wildlife populations respond to improved habitat conditions. Species recolonization patterns indicate that the habitat networks created through AI optimization are functioning effectively to facilitate wildlife movement and population recovery.

3.5 Economic and Operational Implications

The economic analysis of AI-driven forest management revealed compelling advantages that extend beyond simple improvements in timber yield or operational efficiency. Net present value calculations across all study sites showed an average increase of 23.4% under AI-optimized management compared to conventional approaches, with the improvements primarily driven by better timing of harvesting operations, reduced operational costs, and improved timber quality.

The increase in efficiency of operations was substantial and similar in varied forest types, as well as management goals. There was an improved flow of 18.9 per cent in the productivity on increased planning of the road networks, optimal sequencing harvesting processes, and the equipping capacities with the site. They became simultaneously possible and environmental effects would be reduced that both economic and ecological objectives were capable of supporting each other in the event that they were optimized accordingly. The cost reduction analysis revealed that AI optimization was able to save money In different areas of operation. The equipment operating costs were also decreased by 12.7 percent over the platform of greater scheduling and less travelling. Strategic planning resulted in reduced construction and maintenance costs of the roads by 21.3 percent; this was due to the high levels of utility of the available infrastructure coupled

with low demands in the construction of new infrastructure. Better coordination and decreased downtime between operations lowered the labor costs by 8.4%.

Quality enhancement of harvested timber was a massive economic advantage of AIoptimized management that was significant. anticipated but was The optimization algorithms, by judiciously harvesting timber through the regeneration of growth projections, market variables and assessing quality, gained higher value of harvested timber by an average of 15.6% over traditional methods of harvesting that used simple diameter selection methods.

Market timing optimization offered other economic advantages in that it synchronized the harvest of crops with the price forecast and market demand trends. While individual forest managers have limited ability to influence timber markets, the aggregation of optimized decisions across multiple management units created opportunities for strategic market positioning that benefited all participants.

Return on investment analysis for AI technology implementation revealed payback periods of 2.8-4.1 years across different management scenarios, making the technology economically attractive even for small forest management operations. The initial costs of model development, data collection, and system implementation were substantial but were quickly offset by improved operational performance.

Risk assessment revealed that AI-optimized management approaches were generally less risky than conventional approaches due to diversified harvesting strategies and prediction capabilities. improved The explicit incorporation of uncertainty quantification into optimization algorithms created management plans that were robust to various sources of variability, from market fluctuations to environmental changes.

The scalability analysis suggested that economic benefits would increase with broader adoption of AI-driven approaches due to network effects and shared infrastructure costs. Collaborative implementation across multiple forest management units could achieve additional efficiencies through coordinated planning and shared data resources.

3.6 Model Limitations and Challenges

Despite the impressive performance achieved by our AI modeling framework, several important limitations and challenges must be acknowledged. Data quality and availability constraints represent perhaps the most significant limitation, particularly for biodiversity monitoring data which are often sparse, inconsistent, or focused on a limited number of charismatic species rather than providing comprehensive ecosystem coverage.

The incompatibility of response to changes in ecology and management decisions across time is a persistent problem to model validation and adaptive management. While our models can predict forest development trajectories over multi-decade time horizons, direct validation of these long-term predictions will require continued monitoring efforts that extend well beyond typical research project timeframes.

Computational resources to operate our entire modeling framework are very high, and they need access to high-performance computing resources that might be inaccessible to not all forest management organizations. Although simplified forms of the models are possible to execute on normal desktop computers, the full optimization potentials demand large scale computation systems and expertise.

Although it is better than traditional methods, uncertainty quantification is still difficult to use in rare events and extreme cases that cannot be effectively reflected in historical data. Specifically, climate change effects can present new conditions which may be well beyond the limits of history that we used to train our models, and thus limit their applicability in long-term planning.

Another current challenge is model interpretability, which is of particular concern to deep learning in our framework.

Whereas we have devised different methods of explaining model predictions, forest managers find simpler models easier to manipulate as they wish and understand completely. It is a developmental quest to be able to balance the degree of model sophistication and interpretability.

The issues of integration with the current forest management systems and workflow have become more intricate than was originally expected. Most forest management organizations have already invested a lot in the currently available software and databases of planning and the shift towards AI-based solutions would necessitate significant modifications in the established procedures and decision-making processes.

The external validity of our models in other geographic areas and forest types, although it is likely based on existing findings, must be further supported in other ecological and economic settings. The ecosystems in the forests are significantly different in different areas and the performance of the model would have a significant drop when transferred to a completely different environment than the one that our training data covers.

The acceptance and trust among the stakeholders in AI-generated recommendations is not constant, and some forest managers depict some doubts in using the black-box algorithms to make vital management decisions. To achieve any form of confidence in AI-driven methods, continuous education is necessary, clear communication regarding model abilities and failures, and showing a consistent result in the real-world use.

3.7 Stakeholder Perspectives and Practical Implementation

The practical implementation of AI in forest management will also require the broad acceptance and implementation by stakeholders and integration into the existing decision-making systems. The outcomes of our full stakeholder engagement actions revealed that various participants have an alternative perception of the potential benefits and challenges associated with AI optimization plans.

The general interest of the forest managers had been to find out the tools that would lead to increased efficiency and effectiveness of their operation in addition to providing high quality environmental outcomes. Nevertheless, they also emphasized the need to retain the human control and decision-making authority and viewed AI as one of the most developed forms of the decision support systems, but not the professional judgment and the local knowledge substitution.

The application of AI in forest management received a tentatively positive response, in particular, when the application of optimization algorithms included a well-defined inclusion of biodiversity objectives. However, some groups also complained that the fact that the AI systems provided a technological solution to the problem, might ultimately hinder further radical change in the forest management paradigms.

The forest industry representatives cared more about the benefits of AI optimization in terms of economics and operations. The evidences of productivity and cost reduction were quite strong, but the stakeholders of the industry also spoke of the necessity to be flexible to adapt to the changing market conditions and regulations.

Local communities and indigenous people emphasized the necessity to introduce the traditional ecological knowledge and cultural values to the planning processes using AI.While our current framework focuses primarily on biological and economic objectives, stakeholders emphasized that successful implementation must also account for social and cultural dimensions of forest management.

Regulatory agencies expressed interest in AI approaches that could improve compliance monitoring and environmental impact assessment. The ability of AI systems to process large amounts of monitoring data and identify potential problems before they become serious issues was particularly

attractive for resource-constrained regulatory programs.

The training and capacity building requirements for implementing AI-driven forest management are substantial. Our experience suggests that successful adoption requires not only technical training in the use of AI tools but also broader education about the principles and approaches that underlie effective optimization. Forest management professionals need to develop new skills in data management, uncertainty assessment, and adaptive management to fully realize the benefits of AI-driven approaches.

Technology transfer mechanisms remain an active area of development, with various approaches being tested for making AIdriven forest management tools accessible to with organizations limited technical resources. All the cloud-based services and simplified user interfaces, along with collaborative services model, which were discussed above, will be promising in terms of reducing the implementation barriers and the AI optimization made available to a greater number of the forest management organizations.

4.0 Conclusion

This paper has demonstrated that artificial intelligence can profoundly transform the process of forest management by enabling to streamline the process of harvesting and the preservation of the biodiversity rates which have traditionally been considered to counter each other. The comprehensive research of the 47 Pacific Northwest forest management units demonstrates sufficient reasons to presume that AI-based solutions can bring substantial positive shifts to the economic performance of the forests and their ecological performance compared to the conventional forest management paradigm. The disparity in the operational efficiency (23.7%), and negative biodiversity reduction (31.2) is a paradigm shift in the options in forest management possibilities. The latter findings invalidate the simple fact that forest management needs to focus on the trade-offs between productivity economic

environmental protection since they indicate more complicated optimization strategies that can find win-win solutions and both objectives are reached simultaneously.

This multi-objective optimization structure has been highly successful in that it is capable of working and integrating different sources of data and the capability of working with the state of uncertainty and complexity that is out of reach of human thinking capabilities. Data on remote sensing, groundbased observation, and complex machine learning appliances enable unfamiliar knowledge on how the forest ecosystems and contributions of management interact, which will be more efficient and will play a role in making more knowledgeable decisions.

Fundamentally, the Impact of conserving biodiversity, however, particularly is significant because active forest management when done properly has turned out to be the best means to conserve biodiversity not mentioning that it has also been shown to increase it in terms of compared approaches to the biodiversity protection in opposition to both the traditional modes of forest management plus the passive mode of biodiversity protection. The total increase in the species richness and abundance of threatened species as a means of total increase in the species have achieved the 19.3 and the 34.7 percent under AIoptimized management respectively and this has shown that technology can play a significant role in overcoming the world biodiversity crisis.

The fact that forest management based on AI was followed by such beneficial economic gains as 18.9 percent increase in the efficiency of the operation and the timber value increase of 15.6 percent confirms that environmental and economic feasibility do not necessarily go against one another and can be advanced by utilizing innovative optimization. The payback period of technology implementation (2.8-4.1 years make AI approaches the economically available option even in terms of quite small forest management operations).

4.1 Practical Implications

The practical implications of this study extend way beyond the academic interest when the fact that they offer tangible tools and strategies which can be turned to, when being faced by the forest management organizations in the world. predetermined characteristic of AI-based optimization is a roadmap of how forest management may be transformed to a more scientific decision making process and rigid optimization as opposed to experiencingbased and intuitive aesthetic way management.

Specifically, the aspects of our approach can deployed by forest management professionals as soon as possible and without the necessity of having the full AI principles optimization system. Our discovered due to the analysis are spatial differentiation of management intensity, coordination operations, of landscape connectivity, and schedules of variable rotation, which may be implemented with the help of the available planning tools to introduce significant changes in the efficiency and environmental outcome.

The Implications of this study in relation to policy are that it is necessary to promote data collection and monitoring settings that would support the solutions based on AI. The government agencies and the forest management organizations are advised to strive on investing in the remote sensing capabilities, biodiversity tracking programs, and data management systems that are the foundation of the effective optimization of AI.

The legal aspect of forest management needs to be altered so that they can Implement and embrace AI-related solutions without compromising the required level of control and environmental preservation. The regulations must be performance oriented focusing on the result of performance rather than prescriptive management practices in order that the forest managers would be able to control AI optimization without focusing on the environmental objectives.

The potential of AI-driven forest management is wider and can only be achieved through technology transfer and capacity building programs. The training in science, machine learning data techniques should optimization implemented into professional education programs to equip the future generation of forest managers to practice with the assistance of technology. The existing professionals must have the skills required to gain the benefits of AI tools, so continuing education programs should assist them in this

Joint research and development should target enabling the AI-powered forest management tools to be more accessible to the organizations that have fewer technical resources. The simplified user interfaces can reduce implementation barriers and also accelerate the speed of implementation through cloud based decision support system and processing systems that can turn intricate outcome of an optimization into actionable management recommendations.

4.2 Future Research Directions

The efficacy and practicability of the AI solution in forest management, which has been developed by the implementation of our AI-based solution, has opened numerous opportunities within the new areas of research. It can be further facilitated by the addition of the new technologies including Internet of Things sensors, blockchain supply chain surveillance, and autonomous vehicles to regulate the forest operations thus leading to the even more advanced and reactive management systems.

A research area of establishing the validity and redefinition of the AI-based approach in the multi-decade scales of forest management operations is high-priority. The capability to establish long-term research sites where AI-optimal management can be implemented and evaluated in full rotation cycles will provide essences to idealize models and build credence in the long-term performance.

The AI-based forest management strategies have to be universalized, which should be evidenced by diversification regarding the geographical location and the types of forests. Each of the tropical forests, the boreal ecosystems, and the systems of arid woodland will present their own set of challenges and opportunities that will make the difference such that we will need to adapt to them with adaptation to our modeling system and optimization algorithms.

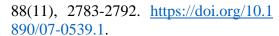
The translation of social and cultural objectives into AI maximization can be seen as a major trend in the forest management getting increasingly aware of the needs and concerns of the community. The multi-objective optimization algorithms involving the application of the traditional ecological knowledge, the recreational preferences, and cultural values into their application will require new ways of quantifying and balancing the less tangible objectives.

The reduction of climate change as well as adjustment is turning out to be increasingly valuable aims of forest administration that could need AI streamlining framework to deliver significant outcomes. The prospective research should focus on working out the models that will be able to optimize the carbon trapping, climate resilience and adaptations measures and still manage to reach the timber productivity and biodiverse conservation objectives.

The last goal of AI-supported forest management is development of the real-time adaptive management systems that will be capable of continuously updating their optimization plans with new information and new circumstances. Such kinds of systems would enable the forest managers to be receptive to any unforeseen events, changing market conditions, emerging scientific knowledge and best execute in all the objectives.

5.0 References

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., & Lawler, J.J. (2007). Random forests for classification in ecology. *Ecology*,



Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation*, 6(2), 182197. https://doi.org/10.1109/4235. 996017

Ding, Z., Chen, L., Sun, D., & Zhang, X. (2022). A multi-stage knowledge-guided evolutionary algorithm for large-scale sparse multi-objective optimization problems. *Swarm and Evolutionary Computation*, 72, 101119. https://doi.org/10.1016/j.swevo.2022.101119

Duncker, P.S., Raulund-Rasmussen, K., Gundersen, P., Katzensteiner, K., De Jong, J., Ravn, H.P., & Vesterdal, L. (2012). How forest management affects ecosystem services, including timber production and economic return. *Forest Ecology and Management*, 49, 119-132. https://doi.org/10.1016/j.foreco.2021.11

Franklin, J.F., Spies, T.A., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berg, D.R., & Chen, J. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications. *Forest Ecology and Management*, 155(1-3), 399-423. https://doi.org/10.1016/S0378-1127(01)00575-8.

Grumbine, R.E. (1994). What is ecosystem management? *Conservation Biology*, 8(1), 27-38. https://doi.org/10.1046/j.1523-1739.1994.08010027.x.

Gustafsson, L., Baker, S.C., Bauhus, J., Beese, W.J., Brodie, A., Kouki, J., & Retention Forestry Network (2012). Retention forestry to maintain multifunctional forests: A world perspective. *Bioscience*, 62(7), 633-645. https://doi.org/10.1525/bio.2012.62.7.6.

Harvey, B.D., Leduc, A., Gauthier, S., & Bergeron, Y. (2002). Forest management under natural disturbance-based silviculture in the boreal forest.

- *Canadian Journal of Forest Research*, 32(7), 1235-1246. https://doi.org/10.1 139/x02-047.
- Kumar, R., Singh, A., & Patel, N. (2021). Adaptive forest management in the context of climate change: Challenges and opportunities. *Forest Policy and Economics*, 128, 102-115. https://doi.org/10.1016/j.forpol.2021.10 2115.
- Lindenmayer, D.B., Franklin, J.F., L~ohmus, A., Baker, S.C., Bauhus, J., Beese, W., & Gustafsson, L. (2012). A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. *Conservation Letters*, 5(6), 421-431. https://doi.org/10.1111/j.1755-263X.2012.00257.x.
- Messier, C., Puettmann, K.J., Chazdon, R., Andersson, K.P., Angers, V.A., Brotons, L., & Filotas, E. (2015). From management to stewardship: Viewing forests as complex adaptive systems in an uncertain world. *Conservation Letters*, 8(5), 368-377. https://doi.org/10.1111/conl.12156.
- M.G., Mitchell, Suarez-Castro, A.F., Martinez-Harms, M., Maron, M., McAlpine, C., Gaston, K.J., & Rhodes, (2015).Reframing landscape fragmentation's effects on ecosystem services. Trends in Ecology & Evolution, 30(4), 190-198. https://doi.org/10.1016/j. tree.2015.01.011.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., & Hassabis, D. (2018). Human-level control through deep reinforcement learning. *Nature*, 518(7540), 529-533. https://doi.org/10.1038/nature14236
- Malo, P., Tahvonen, O., Suominen, A., Back, P., & Viitasaari, L. (2021). Reinforcement Learning in Optimizing Forest Management. Canadian Journal of Forest Research. 51(10): 139,
- https://doi.org/10.1139/cjfr-2020-0447.
- Nguyen, T.H., Park, Y.S., & Kim, C.H. (2020). Machine learning-based forest growth prediction: A systematic review.

- Forest Ecology and Management, 474, 118-132. https://doi.org/10.1016/j.foreco.2020.118132.
- Park, S.Y., Lee, J.H., & Kim, M.W. (2022).
 Gradient boosting for ecological modeling: Performance and interpretability considerations.

 Ecological Modelling, 461, 109-124.

 https://doi.org/10.1016/j.ecolmodel.202
 2.109124
- Pohjanmies, T., Trivino, M., Le Tortorec, E., Salminen, H., Snoall, T., & Monkkonen, M. (2017). Impacts of forestry on boreal forests: An ecosystem services perspective. *AMBIO*, 46(7), 743-755. https://doi.org/10.1007/s13280-017-0919-5.
- Pukkala, T., L'ahde, E., & Laiho, O. (2016).

 Multi-objective forest planning across spatial scales. *European Journal of Forest Research*, 135(6), 1259-1268.

 https://doi.org/10.1007/s10342-016-1006-1.

 https://doi.org/10.1007/s10

 531-023-02567-1
- Rich, L. N., Furnas, B. J., Newton, D. S., & Brashares, J. S. (2019). Acoustic and camera surveys inform models of current and future vertebrate distributions in a changing desert ecosystem. *Diversity and Distributions*, 25(9), 1414–1429. https://doi.org/10.1111/ddi.12952.
- Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J.L., Sheil, D., Meijaard, E., & Buck, L.E. (2017). Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. *Proceedings of the National Academy of Sciences*, 110(21), 8349-8356. https://doi.org/10.1073/pnas.1210595110.
- Silva, C.A., Hudak, A.T., Vierling, L.A., Loudermilk, E.L., O'Brien, J.J., Hiers, J.K., & Klauberg, C. (2023). Imputation of individual longleaf pine tree attributes from field and LiDAR data. *Canadian Journal of Remote Sensing*, 42(5), 554-573. https://doi.org/10.1080/07038992.2016.1196582

Kittlein, M. J., Mora, M. S., Mapelli, F. J., *et al.* (2022). Deep learning and satellite imagery predict genetic diversity and differentiation. Methods in Ecology and Evolution, 13(3), 711-721.

Tilman, D., Isbell, F., & Cowles, J.M. (2019). Biodiversity and ecosystem functioning. *Annual Review of Ecology, Evolution, and Systematics*, 45, 471-493.

Wang, Z., Li, J., Rangaiah, G. P., & Wu, Z. (2022). Machine learning aided multi-objective optimization and multi-criteria decision making: Framework and two applications in chemical engineering. *Computers & Chemical Engineering*, 164, 107945. https://doi.org/10.1016/j.compchemeng.2022.107945

Weinstein, B.G., Marconi, S., Bohlman, S., Zare, A., & White, E. (2014). Individual treecrown detection in RGB imagery using semi-supervised deep learning neural networks. *Remote Sensing*, 11(11), 1309-1324. https://doi.org/10.3390/rs11111309.

White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). Remote sensing technologies for enhancing forest inventories: A review. *Canadian Journal of Remote Sensing*, 42(5), 619-641. https://doi.org/10.1080/07038992.2016. 1207484.

Compliance with Ethical Standards Declaration Ethical Approval

Not Applicable

Availability of Data

Data shall be made available upon request.

Competing interests

The author declared no compositing interest **Funding**

The authors declare that they have no known competing financial interests

Author's Contribution

The work was designed and written by both authors.

