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Abstract: This study presents an empirical and
simulation-based  comparison  of  four
established estimators for estimating the
population mean in two-occasion successive
sampling. Artificial populations have been
generated under varying correlation structures
(strong, moderate, and weak) and different
sample sizes to evaluate estimator their
performances using percent relative efficiency
(PRE) and the optimum replacement policy.
The results reveal that estimators’ efficiencies
increase with increase in correlation strength
and sample size. Real-data applications
supported the simulation outcomes, confirming
the superior and consistent performance of
some estimators over others across multiple
populations. Overall, no single estimator
dominated across all conditions, emphasizing
that the choice of estimator should depend on
the expected correlation structure and
sampling design.
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1.0 Introduction

Successive sampling on two occasions has
gained significant attention in recent years due
to its application in repeated surveys and
longitudinal population studies. This method
involves retaining a part of the sample from the
first occasion and supplementing it with a new
portion in the second occasion, allowing the
exploitation of inter-occasion correlation for
more efficient estimation (Cochran, 1977
Jessen, 1942).

Several researchers have proposed improved
estimators to enhance efficiency in successive
sampling. Singh and Pal (2017) introduced a
generalized class of estimators for population
mean estimation using auxiliary information.
Beevi (2018) developed a modified ratio-type
estimator  that  integrates  correlation
information more effectively. Later, Tiwari et
al. (2023) and Bhushan and Pandey (2024)
extended this approach to handle non-response
and model-based scenarios, respectively, with
improved Mean Squared Error (MSE)
performance.

Recent works by Ailobhio et al. (2025) and
Ikughur et al. (2024) further emphasized the
need for comparative empirical evaluations of
these estimators across different correlation
strengths and sample size scenarios, as
performance may vary considerably under
changing population structures. Despite these
advances, empirical evidence comparing these
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estimators under simulation and real-world
datasets remains limited.

Thus, this study aims to fill this gap by
performing a detailed simulation-based
comparison of four selected existing estimators
those of Singh and Pal (2017), Beevi (2018),
Tiwari et al. (2023), and Bhushan and Pandey
(2024) using different correlation strengths and
sample sizes. Additionally, their performance
is validated using four real-world datasets.

2.0  Sampling Procedure and notations

Given a finite population Q = (Q2,,Q,,---,Q,)
of N units, which has been sampled over two
occasions, the variables under study are
denoted by x(y) on the first (second) occasions
respectively. We will assume that the

information on an auxiliary variable z (with
known population mean), is available on both

the occasions and is positively correlated with
X and y on the first and second occasions

respectively. Let a simple random sample
(without replacement) of size n be drawn on
the first occasion, and random sub-sample of
size m=nAis retained (matched) from the
sample selected on the first occasion for its use
on the second occasion, while a fresh sample
(unmatched sample) of size u=(n—m)=nu is
selected on the second occasion from the
remaining population (N -n) by simple
random sampling (without replacement)
method so that the sample size on the second
occasion is also n, A and u are the fractions

of the matched and fresh sample, respectively,
at the current (second) occasion. They satisfy
the following conditions, (0< u<1),

O<a<hand A+ u=1).

Y : The population mean of study variable y on the second occasion
X : The population means of study variable x on the first occasion

Z : The population means of auxiliary variable z
X —lzn:x y —lzn:y z —lzn:z X —iix y —liy z —liz X —EZX
n ni:1I’ n ni:1|1” ni:1| m mi:l|’ m m 4 |’m m 4 i u . i

yu = 12 y;, and Zu = 1Zzi are the sample means of study variables showed in suffices
u u

i=1 i=1

Py Py21 Py, - The correlation coefficient between the variables shown in suffices.

N —
S?=(N —1)’12(xi - X)?, 85, SZ2 are Population mean squares of X, y, z respectively.
i=1

N _ _
S =(N —1)‘1Z(xi - X)(y;-Y),S,,,S,, are Covariance between variables showed in suffices
i=1

»Myz Xz
S
Cy=7y,cx,
f].:& ’f :i ' ﬂ’u :i_i,lmzl_i an
Ny, N u N m

C, are Coefficients of variation for the variables shown in suffices.

1 1

di=--—

"n N

n

When there is no auxiliary variable, the usual unbiased estimator y. =y, is used to estimate the
population means (Mukhopadhyay et al., 2020). The variance is given by

~ g2
war(y,) =2
n

1)

Also, when there is no matching. The variance is given by
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0= e

V(Y)=| = |L+,/0-p2 )=

(¥) ( 2) Pyl o
3.0 Review of Selected Class of Estimators under Study
i) Singh Pal (2017). Proposed an exponential method for estimating the population mean in
successive sampling. The estimator is given as;

Te =171, + A-7)T, (3)
where 7 is constant to be determined from minimum mean square error. T, and T, are estimators
of unmatched and matched portion and th(ey are ():iefined as followed;

. _ salz, -7
T, =y, +b, ., (Z—2u)[eXps —=——=
u [yu yz(u)( )] p{a(Zu _ Z)-I— 2ab}

[ a2
T,=|Y,+b Xn = Xm) + 0, (Z = 2u) |EXps —=——=

m [ym yx(m)( ) ya( )( )] p{a(zn N Z)+ zab}
where b, is the regression coefficient of yand z based on the sample uunmatched portion,
whileb,, ., and b, are the regression coefficient of yon xand yon z respectively based on

the sample m matched portion. a & bare suitably chosen scalars and & is a scalar taking value —1
and +1 for generating exponential ratio type and exponential product type estimator respectively

The optimal unmatched proportion is given as;

sy = (ory + o, ) 4)

a,
The minimum mean square error (MMSE ) were derived to the first degree of approximation and
given by;
a1 fa, -y, + e, £S5
MMSE(TSP) — 3[( ) 3 ILl(; 2 /’10 2 ]_y (5)
|_a3 —Hy azJ n

where;
& =1= Py = P+ 2P Py Pri O = Pox = 2P Py Py +6°0°
ay =1-p2, +5°0%,0=aZ/2(aZ +b);
Singh & Pal (2017) concluded that the estimator T, is more efficient than the usual the estimator

N n

yn and the difference type estimator Y

i) Beevi (2005). Proposed a dual to ratio estimators for mean estimation in successive sampling
using auxiliary information on two occasion. The estimator is given as;

TB = V/Tu + (1_ l//)Tm (6)
where y is constant to be determined from minimum mean square error. T, and T,, are estimators
of unmatched and matched portion and they are defined as follow;

- Zu - Xm Zn
T, =y,— T =y —=
o =Y Z Y Xn Z
SV}
2 ra ‘x &
vAV
e
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n

where, zu =(1+9)Z —gZ;Xm = 1+ 9)X —gX;xn =(1+9)X;g = N

The optimal unmatched proportion is given as;
—k, £k +kk,
Ho = K (7
2
The minimum mean square error (MMSE ) were derived to the first degree of approximation and
given by;

2
MMSE(T, ) = {%F 8)
K, + ok, |n
kl =1+gz _zgpyz;kZ = 2g(pyx _pyz)
Beevi (2018) concluded that the use of an auxiliary variable in estimating the population mean in
successive sampling is justified. The proposed estimator performed better when the auxiliary
information was strongly and positively correlated with the study variable. Therefore, there is a
need to review these claims and examine the efficiency of the proposed estimator as well as the
cost of sample replacement on the second occasion.

iii) Tiwari et al. (2023), proposed estimator on efficient Estimation in successive sampling
over two occasion. The proposed estimators is given by
Tyss =0T, + (1- ¢)Tu (9)

where ¢ is a constant to be determined from minimum mean square error. T, and T, are
estimators of unmatched and matched portion and they are defined as follow;

Tu :yu[ijexpa[E_EuJ Tm = I:glm +6{l()_(n —)_(m)expdz[g_zmj
z Z+2Zu )

u u Z+17n

where « is real scalar, ¢, and «, are constants derived from MSE.
The optimal unmatched proportion is given as;
9. = 2 i\/é‘()z(:l-—pzzx)_50\/2

’ V ? + 50p22x
The minimum mean square error (MMSE ) were derived to the first degree of approximation and
given by;

(10)

S; 5,[5,0-6,02) -6V ?]

N |5,a-6,p0%) -6V 7] (11)
where &, :1—,05Z V' =p, — PP, and 6, is optimal unmatched proportion (fraction of sample
taken afresh).

However, Tiwari et al. (2023), concluded that their estimator works better than the estimators of
Shabbir et al.(2005) and Singh and Pal (2016) in terms of efficiency gain.

iv) Bhushan and Pandey (2024). Developed an effective class of estimators for population
mean estimation in successive sampling using simulation approach. The estimator is given as;

TBP = ¢Tm +(1- ¢)Tu (12)

MMSE (T ) =
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where ¢ is a constant to be determined for MSE . The estimators for the unmatched and matched

portion are as follows

T, =V, +W5(Z—Eu), T, :wly_/m +W2()_(n —)_(m)+W3(En —Em)+W4(Z—En)
where w,,i =1,2,3,4,5 are suitably chosen constants

The optimal unmatched proportion is given as;

0 - 1i,/1—,0§xlZ

" P, )
Also, the MMSE of the estimator T, to the first degree of approximation is given by
minV " (T,)
MMSE =
(Tee) minV " (T,) (14)
Y

S2 (1- p2)|-p2) +0(0% - p2)]

(pyx _pyszz)

where minV (T,) = —

- 1 [
minV (Tg) = %(1"_ 1_p5x.z )Sj

Bhushan and Pandey (2024) concluded that for
large population, the proposed estimator is
always better for survey practitioners than
other estimators proposed by Singh and
Vishwakarma (2007), Singh and Pal (2016)
and Bhushan et al. (2020), in terms of
efficiency gain.

In summary, from the reviewed literature,
several estimators have been proposed for two-
occasion successive sampling; however, their
comparative performances in terms of
efficiency under varying levels of correlation
and sample sizes remain unclear. EXxisting
empirical studies are often limited to specific
conditions and  populations,  creating
uncertainty about which estimator performs
best in practical situations. Consequently,
survey practitioners lack clear guidance on
selecting the most efficient estimator for a
given survey conditions, particularly when the
correlation between variables are moderate or
weak. Hence, this study focuses on addressing

5.0 Efficiency Comparison

N @-p2)+6%(p% - p2,)]

. pyx.Z = \/l_pzzx \/1_p52

these gaps by conducting a comprehensive
comparative evaluation of selected prominent
estimators  under  different  correlation
structures and sample sizes.

4.0 Optimum Replacement Policy

The optimum unmatched proportion () is a

fraction of sample taken afresh on the second
occasion. It is obtained such that the population

meanY is estimated with minimum mean
square error (with Maximum precision),
thereby playing the role of reducing cost of

survey. The real values of ugexists, when
0<u, <1 and admissible for only positive
values. On the other hand, two real values of
U, are obtained, but the one that lies within the
interval 0 < u, <1 is chosen. If both values lie

within the specified interval, the value closed
to zero is selected, since the smaller value of £,

minimize the cost of survey.

The Percent Relative Efficiency (PRE) is employed to assess the efficiency of the estimators.

The PRE is expressed as:
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V(y,)
MMSE(T,)

opt

E, = PRE(T,.y,) =

Where;

x100 E, = PRE(T,,Y) =

V—(% x100
MMSE(T,) o (15)

V- V(V>=@b+ﬂl——p)]87

n

A PRE value greater than 100 indicates a gain
in efficiency of the estimatori, while a PRE
value less than 100 indicates a loss in
efficiency.

6.0 Simulation Design

In this section, a simulation study was
performed using R software to generate an
artificial populations taking into consideration

moderate and weak) and sample sizes (large,
medium and small), to evaluate the
performance of the estimators of Singh and Pal
(2017), Beevi (2018), Tiwari et al. (2023) and
Bhushan and Pandey (2024).

The descriptive statistics for the simulated data
are summarized in Table 1. While the results
obtained from the analyses are summarized and

of different correlation strength (strong, presented in Tables 2 to 4.

Table 1: Statistics for Different Correlation Strengths with Varying Sample Sizes

Correlation N n g2 Y X 7
Strength pxy pzy pzx y

Strong 1000 120,60,30 0.9887 0.9041 0.9121 0.8451 0.0374 0.0541 0.0454
Positive

Moderate 1000 120,60,30 0.6695 0.5787 0.6613 7.3472 0.3362 0.3213 0.1793
Positive

Weak 1000 120,60,30 0.2654 0.2888 0.2714 0.9983 0.0653 0.0541 -0.0034
Positive

7.0  Application to Real Data Sets

To further assess the performance of the
considered estimators, four real data sets were
extracted from Mukhopadhyay et al. (2020).
The characteristics of these populations are
summarized in Table 5, while the results

obtained are presented in Table 6.
Descriptions of the Data Sets:

(i) Population 1I: Wheat area in India
(Sukhatme and Sukhatme, 1970);y: Area under
wheat (1937); x: Area under wheat (1936); z:
Total cultivated area (1931).
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Table 2: Summary Statistics of Real Populations
Population vi kva = n
p Y X Z N pyX pyZ pZX Cy CX CZ
| 201.41 218.41 765.35 34 15 0.93 0.83 0.90 0.74 0.76 0.61
1 5182.60 5182.60 1126.50 80 30 091 0.99 0.94 0.35 0.94 0.75
11 76.20 68,04 68.59 34 15 0.98 0.99 0.99 0.61 0.62 0.18
[\ 19.93 19.93 20.55 51 25 0.97 0.60 0.57 0.48 0.26 0.30
Source: Mukhopadhyay et al. (2020)
Table 3: When the Study and Auxiliary Variables are Strongly Positively Correlated
Estimators Population I, for N =120 Population I1, for N =80 Population I11, for N = 60
Ky E, E, Ko E, E, Hy E, E,
B 100 100 100 100 100 100
Yn
Tsp 047 156.98 90.26 0.47 150.53 86.55 0.47 147.50 84.80
T 0.01 109.42 62.91 0.01 99.37 57.13 0.01 95.09 54.67
Tss 0.87 609.35  350.35 0.87 609.35  350.35 0.87 609.35 350.35
Tep 074 109653  630.45 074 134827  775.19 074 1600.01 919.93
Table 4: When the Study and Auxiliary Variables are Moderately Positively Correlated
Estimators Population I, for n =120 Population 11, for n =80 Population 111, for N = 60
Uy E, E, Uy E, E, Uy E, E,
~ 100 100 100 100 100 100
Yn
Tsp 0.56 110.66 96.43  0.56 105.23 9170  0.56 102.72 89.51
Tg 0.01 853.21 74348  0.01 810.01 70583  0.01 789.79 688.22
Tiss 0.60 157.07 13687  0.60 157.07 13687  0.60 157.07 136.87
Tep 053 198.57 17303 0.3 225.65 19663  0.53 252.73 220.23
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Table 5: When the Study and Auxiliary Variables are Weakly Positively Correlated

Estimators Population I, for n =120 Population 11, for n =80 Population 111, for N = 60
Hy E E, Ho E E, Ho E, E,
A 100 100 100 100 100 100
Ya
TSP 0.56 90.99 89.36 0.56 86.53 84.98 0.56 82.94 82.94
TB *% _ _ *% _ - *% - -
TKss 0.51 110.20 108.23 0.51 110.20 108.23 0.51 110.20 108.23
TBP 0.51 302.97 297.54 0.51 400.52 393.34 0.51 498.07 489.14
Note, ‘**’ represent Inadmissible, which implies 1, does not exist
Table 6: Summary of results for real data set
Estimators  Population | Population 11 Population 111 Population IV
Hy E, E, Hy E, E, Hy E, E, Hy E, E,
A 100 100 100 100 100 100 100 100
Ya
TSP 0.50 217.70 148.86 0.43 247.38 174.97 0.42 258.02 154.68 0.64 300.63 186.86
TB 0.23 14.57 4471 ** - - *x - - 0.39 145572.5 6189.59
TKSS 0.78 342.33 234.08 0.76 5087.73 3598.57 0.88 5025.13 3012.56 0.80 218.60 135.87
TBP 0.60 296.98 205.57 0.53 2747.83 1943.84 0.50 14085.66 1566.56 0.77 241.02 142.00

Note, ‘**’ represent Inadmissible, which implies 1, does not exist
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(it) Population I1: Agricultural data from
Murthy (1967);y: Area under wheat (1964);
X: Area under wheat (1963); z: Cultivated
area (1961).

(iii) Population I11: Literacy rate of India
(Census, 2011)

Yy, X, Z. Literacy rates of India (2011, 2001,
and female literacy 2011).

(iv) Population IV: Abortion rates in the
United States (CDC, 2008-2011);

y, X, z: Abortion rates across U.S. states
(2008, 2007, and 2005).

8.0  Results and Discussion

Simulation Results

Tables 3 to 4 summarized the performances
of the four estimators across different
correlation strengths.

(i) Strong Correlation between the study
and auxiliary variables
From Table 3, when the correlation between
the study and auxiliary variables is strong, the
estimator of Bhushan and Pandey (2024)
consistently yields a higher percent relative
efficiency (PRE) with a moderate optimum
unmatched proportion, followed by Tiwari et
al. (2023). This indicates that both estimators
are highly efficient in situations where
auxiliary variables are strongly associated
with the study variable. The estimators of
Beevi (2018) and Singh and Pal (2017) show
smaller optimum unmatched proportion
values and lower PREs, implying less
precision under strong correlations.

(i) Moderate Correlation between the
study and auxiliary variables
Under moderate correlation (Table 4), Beevi
(2018) exhibits the minimum optimum
unmatched proportion with a relatively
higher PRE for all sample sizes. This
suggests a reduction in survey cost
accompanied by higher efficiency gains. It is
followed by the estimators of Bhushan and
Pandey (2024), Tiwari et al. (2023), and
Singh and Pal (2017).

(iii) Weak Correlation between the study
and auxiliary variables
In Table 5, where the correlation is weak,
Beevi (2018) becomes inadmissible,
suggesting instability or non-existence under
such conditions. Bhushan and Pandey (2024)
maintains higher efficiency, followed by
Tiwari et al. (2023), with both estimators
having the same optimal replacement values.
Singh and Pal (2017) perform poorly as the
correlation weakens.

Real Data Results

The real-data application results (Table 6)
reinforce the findings from the simulation
study. The estimators of Tiwari et al. (2023)
and Bhushan and Pandey (2024)
demonstrated consistent performance across
all four populations, particularly under high-
correlation datasets (Populations I, II, and
I1), followed by Singh and Pal (2017).
Beevi (2018) exhibited higher efficiency for
Population 1V but produced inadmissible
values for Populations Il and 11, indicating
sensitivity to the correlation structure.

9.0 Conclusion

This study provides a comprehensive
empirical comparison of four prominent
estimators for population mean estimation
under two-occasion successive sampling.
The findings reveal that:

(i) Estimators’ efficiencies improve with
increasing correlation strengths and
sample sizes.

(i) The Bhushan and Pandey (2024)
estimator performs best under both
strong and weak positive correlations,
followed by the estimator of Tiwari et
al. (2023).

(iii)Beevi  (2018) exhibits robustness
under moderate correlations,
followed by Bhushan and Pandey
(2024).

(iv) The efficiency of Tiwari et al. (2023)
remains stable across all sample sizes,
implying consistent performance.
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(V) Generally, estimators’ efficiencies
decline as correlation weakens.
(vi)No single estimator dominates under
all conditions; thus, the choice of
estimator should be guided by the
expected correlation structure and
data characteristics.
These findings provide practical guidance for
survey practitioners and researchers involved
in the design and analysis of successive
sampling studies.

10.0 References

Ailobhio, D. T., Ikughur, J. A., Nwoasu, S.
C., & Uba, T. (2025). An improved
estimation procedure for two-occasion
successive sampling. Journal of the
Royal Statistical Society — Nigeria
Group, 2(1), 222-236.

Bandyopadhyay, S., & Singh, H. P. (2020).
Improved ratio-type estimators in
successive sampling. Journal of Applied
Statistics, 47(3), 411-427.

Beevi, A. (2018). Improved ratio estimators
for two-occasion successive sampling.
International Journal of Statistical
Techniques and Applications, 7(2), 155-
166.

Bhushan S. & Pandey S. (2024). An effective
class of estimators for population mean
estimation in successive sampling using
simulation approach. Journal of
Statistical Computation and Simulation
94(6), 1204-1235.

Cochran, W. G. (1977). Sampling
Techniques (3rd ed.). Wiley.

Gupta, P. C., & Singh, D. (1983). Ratio
estimators using auxiliary information in
successive sampling: The Indian Journal
of Statistics, 45(B), 324-332.

Jessen, R. J. (1942). Statistical investigation
of a sample survey for obtaining farm
facts. lowa Agricultural Experiment
Station Research Bulletin, 304, 1-104.

Mukhopadhyay, P., Singh, H. P, &
Bandyopadhyay, S. (2020). Use of
auxiliary information in successive

sampling. Communications in Statistics —
Theory and Methods, 49(14), 3421-3437.

Patterson, H. D. (1950). Sampling on
successive  occasions  with  partial
replacement of units. Journal of the Royal
Statistical Society, Series B, 12(2), 241-
255.

Rao, J. N. K., & Graham, J. E. (1964).
Rotation designs for sampling on
successive occasions. Journal of the
American Statistical Association,
59(306), 492-509.

Sen, A. R. (1971). Successive sampling with
partial replacement and its applications.
Sankhya, Series B, 33(1), 1-14.

Singh, D., Chauhan, P. S., & Tracy, D. S.
(1973). Successive sampling and use of
auxiliary information. Journal of the
Indian Society of Agricultural Statistics,
25, 67-83.

Singh, R., & Pal, S. (2017). A class of
modified estimators in two-occasion
successive sampling. Journal of Statistics
Applications & Probability, 6(3), 479-
490.

Srivastava, S. K., & Jhajj, H. S. (1981).
Unbiased classes of estimators in
successive sampling. Sankhya, Series B,
43, 249-256.

Tiwari K. K., Bhougal S. & Kumar S.
(2023). On Efficient Estimation in
Successive  Sampling Over Two
Occasions. Thailand Statistician, 21(2):
305-313

Declaration

Competing interests

There are no known financial competing

interests to disclose

Ethical Consideration

Ethical consideration is not applicable to this

study because it is a conceptua paper

Funding:

There was no external financial sponsorship

for this study

Availability of data and materials:



Applied Science, Computing and Energy, 2025, 3(3), 471-481 481

The data supporting the findings of this
study can be obtained from the
corresponding author upon request
Authors’ Contributions

Charles Kelechi Ekezie designed the study,
developed the simulation framework,
analyzed data, and drafted the manuscript.
Emmanuel John Ekpenyong contributed to

estimator formulation, validated results, and
revised the manuscript for statistical
accuracy. David Friday Adiele assisted with
literature review, result interpretation, and
final editing for clarity and consistency. All
authors approved the final manuscript for
publication.



