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Abstract: This study presents an empirical and 

simulation-based comparison of four 

established estimators for estimating the 

population mean in two-occasion successive 

sampling. Artificial populations have been 

generated under varying correlation structures 

(strong, moderate, and weak) and different 

sample sizes to evaluate estimator their 

performances using percent relative efficiency 

(PRE) and the optimum replacement policy. 

The results reveal that estimators’ efficiencies 

increase with increase in correlation strength 

and sample size. Real-data applications 

supported the simulation outcomes, confirming 

the superior and consistent performance of 

some estimators over others across multiple 

populations. Overall, no single estimator 

dominated across all conditions, emphasizing 

that the choice of estimator should depend on 

the expected correlation structure and 

sampling design.  
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1.0 Introduction 
 

Successive sampling on two occasions has 

gained significant attention in recent years due 

to its application in repeated surveys and 

longitudinal population studies. This method 

involves retaining a part of the sample from the 

first occasion and supplementing it with a new 

portion in the second occasion, allowing the 

exploitation of inter-occasion correlation for 

more efficient estimation (Cochran, 1977; 

Jessen, 1942). 

Several researchers have proposed improved 

estimators to enhance efficiency in successive 

sampling. Singh and Pal (2017) introduced a 

generalized class of estimators for population 

mean estimation using auxiliary information. 

Beevi (2018) developed a modified ratio-type 

estimator that integrates correlation 

information more effectively. Later, Tiwari et 

al. (2023) and Bhushan and Pandey (2024) 

extended this approach to handle non-response 

and model-based scenarios, respectively, with 

improved Mean Squared Error (MSE) 

performance. 

Recent works by Ailobhio et al. (2025) and 

Ikughur et al. (2024) further emphasized the 

need for comparative empirical evaluations of 

these estimators across different correlation 

strengths and sample size scenarios, as 

performance may vary considerably under 

changing population structures. Despite these 

advances, empirical evidence comparing these 
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estimators under simulation and real-world 

datasets remains limited. 

Thus, this study aims to fill this gap by 

performing a detailed simulation-based 

comparison of four selected existing estimators 

those of Singh and Pal (2017), Beevi (2018), 

Tiwari et al. (2023), and Bhushan and Pandey 

(2024) using different correlation strengths and 

sample sizes. Additionally, their performance 

is validated using four real-world datasets. 
 

2. 0 Sampling Procedure and notations  
 

Given a finite population ),,,( 21 N=   

of N  units, which has been sampled over two 

occasions, the variables under study are 

denoted by )(yx  on the first (second) occasions 

respectively. We will assume that the 

information on an auxiliary variable z  (with 

known population mean), is available on both 

the occasions and is positively correlated with 

x  and y  on the first and second occasions 

respectively. Let a simple random sample 

(without replacement) of size n  be drawn on 

the first occasion, and  random sub-sample of 

size nm = is retained (matched) from the 

sample selected on the first occasion for its use 

on the second occasion, while a fresh sample 

(unmatched sample) of size nmnu =−= )(  is 

selected on the second occasion from the 

remaining population )( nN −  by simple 

random sampling (without replacement) 

method so that the sample size on the second 

occasion is also n ,   and   are the fractions 

of the matched and fresh sample, respectively, 

at the current (second) occasion. They satisfy 

the following conditions, )10(   , 

)10(    and )1( =+  .

 Y : The population mean of study variable y  on the second occasion 

X : The population means of study variable x  on the first occasion 

Z : The population means of auxiliary variable z   
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When there is no auxiliary variable, the usual unbiased estimator nn
yy =

^

 is used to estimate the 

population means (Mukhopadhyay et al., 2020). The variance is given by 

   
n

s
y

y

n

2^

)var( =          (1) 

Also, when there is no matching. The variance is given by 
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3.0  Review of Selected Class of Estimators under Study 

i) Singh  Pal (2017). Proposed an exponential method for estimating the population mean in 

successive sampling. The estimator is given as; 

   muSP TTT )1(  −+=         (3) 

where   is constant to be determined from minimum mean square error. uT  and mT  are estimators 

of  unmatched and matched portion and they are defined as followed; 
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where )(uyzb  is the regression coefficient of y and z based on the sample u unmatched portion, 

while )(myxb  and )(myzb  are the regression coefficient of y on x and y on z respectively based on 

the sample m matched portion. ba & are suitably chosen scalars and   is a scalar taking value 1−  

and 1+  for generating exponential ratio type and exponential product type estimator respectively 

. 

The optimal unmatched proportion is given as; 
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The minimum mean square error ( )MMSE  were derived to the first degree of approximation and 

given by; 
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Singh & Pal (2017) concluded that the estimator SPT  is more efficient than the usual the estimator 

n
y
^

and the difference type estimator 
^

Y   

ii)  Beevi (2005).  Proposed a dual to ratio estimators for mean estimation in successive sampling 

using auxiliary information on two occasion. The estimator is given as; 

muB TTT )1(  −+=         (6) 

where   is constant to be determined from minimum mean square error. uT  and mT  are estimators 

of unmatched and matched portion and they are defined as follow; 
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The optimal unmatched proportion is given as; 
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The minimum mean square error ( )MMSE  were derived to the first degree of approximation and 

given by; 
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Beevi (2018) concluded that the use of an auxiliary variable in estimating the population mean in 

successive sampling is justified. The proposed estimator performed better when the auxiliary 

information was strongly and positively correlated with the study variable. Therefore, there is a 

need to review these claims and examine the efficiency of the proposed estimator as well as the 

cost of sample replacement on the second occasion. 

iii) Tiwari et al. (2023), proposed estimator on efficient Estimation in successive sampling 

over two occasion. The proposed estimators is given by 

  umKSS TTT )1(  −+=
        (9) 

where   is a constant to be determined from minimum mean square error.
 uT  and mT  are 

estimators of unmatched and matched portion and they are defined as follow; 
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where   is real scalar, 1  and 2  are constants derived from MSE . 

The optimal unmatched proportion is given as; 
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The minimum mean square error ( )MMSE  were derived to the first degree of approximation and 

given by; 
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where 
2

0 1 yz −= , yzzxyxV  −=  and 0  is optimal unmatched proportion (fraction of sample 

taken afresh). 

However, Tiwari et al. (2023), concluded that their estimator works better than the estimators of 

Shabbir et al.(2005) and Singh and Pal (2016) in terms of efficiency gain. 

iv) Bhushan and Pandey (2024). Developed an effective class of estimators for population 

mean estimation in successive sampling using simulation approach. The estimator is given as; 

  umBP TTT )1(  −+=
        (12) 
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where   is a constant to be determined for MSE . The estimators for the unmatched and matched 

portion are as follows 
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Also, the MMSE  of the estimator 
BPT to the first degree of approximation is given by 
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Bhushan and Pandey (2024) concluded that for 

large population, the proposed estimator is 

always better for survey practitioners than 

other estimators proposed by Singh and 

Vishwakarma (2007), Singh and Pal (2016) 

and Bhushan et al. (2020), in terms of 

efficiency gain. 

In summary, from the reviewed literature, 

several estimators have been proposed for two-

occasion successive sampling; however, their 

comparative performances in terms of 

efficiency under varying levels of correlation 

and sample sizes remain unclear. Existing 

empirical studies are often limited to specific 

conditions and populations, creating 

uncertainty about which estimator performs 

best in practical situations. Consequently, 

survey practitioners lack clear guidance on 

selecting the most efficient estimator for a 

given survey conditions, particularly when the 

correlation between variables are moderate or 

weak. Hence, this study focuses on addressing 

these gaps by conducting a comprehensive 

comparative evaluation of selected prominent 

estimators under different correlation 

structures and sample sizes. 

4. 0 Optimum Replacement Policy 

The optimum unmatched proportion ( 0 ) is a 

fraction of sample taken afresh on the second 

occasion. It is obtained such that the population 

meanY  is estimated with minimum mean 

square error (with Maximum precision), 

thereby playing the role of reducing cost of 

survey. The real values of 0 exists, when 

10 0    and admissible for only positive 

values. On the other hand, two real values of 

0  are obtained, but the one that lies within the 

interval 10 0    is chosen. If both values lie 

within the specified interval, the value closed 

to zero is selected, since the smaller value of 0  

minimize the cost of survey. 

 

5. 0 Efficiency Comparison 

The Percent Relative Efficiency (PRE) is employed to assess the efficiency of the estimators. 

The PRE is expressed as: 
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A PRE value greater than 100 indicates a gain 

in efficiency of the estimator i , while a PRE 

value less than 100 indicates a loss in 

efficiency. 

6. 0 Simulation Design 

In this section, a simulation study was 

performed using R software to generate an 

artificial populations taking into consideration 

of different correlation strength (strong, 

moderate and weak) and sample sizes (large, 

medium and small), to evaluate the 

performance of the estimators of Singh and Pal 

(2017), Beevi (2018), Tiwari et al. (2023) and 

Bhushan and Pandey (2024). 

The descriptive statistics for the simulated data 

are summarized in Table 1. While the results 

obtained from the analyses are summarized and 

presented in Tables 2 to 4. 
 

Table 1: Statistics for Different Correlation Strengths with Varying Sample Sizes 
 

Correlation 

Strength 
N  n  

xy  zy  zx  
2

yS  Y  X  Z  

Strong 

Positive 

1000 120,60,30 0.9887 0.9041 0.9121 0.8451 0.0374 0.0541 0.0454 

Moderate 

Positive 

1000 120,60,30 0.6695 0.5787 0.6613 7.3472 0.3362 0.3213 0.1793 

Weak 

Positive 

1000 120,60,30 0.2654 0.2888 0.2714 0.9983 0.0653 0.0541 -0.0034 

 

7. 0 Application to Real Data Sets 

To further assess the performance of the 

considered estimators, four real data sets were 

extracted from Mukhopadhyay et al. (2020). 

The characteristics of these populations are 

summarized in Table 5, while the results  

 

obtained are presented in Table 6. 

Descriptions of the Data Sets: 

(i) Population I: Wheat area in India 

(Sukhatme and Sukhatme, 1970);y: Area under 

wheat (1937); x: Area under wheat (1936); z: 

Total cultivated area (1931).
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Table 2: Summary Statistics of Real Populations 
 

Population 
Y  X  Z  N  n  

yx  yz  zx  yC  xC  zC  

I 201.41 218.41 765.35 34 15 0.93 0.83 0.90 0.74 0.76 0.61 
II 5182.60 5182.60 1126.50 80 30 0.91 0.99 0.94 0.35 0.94 0.75 

III 76.20 68,04 68.59 34 15 0.98 0.99 0.99 0.61 0.62 0.18 

IV 19.93 19.93 20.55 51 25 0.97 0.60 0.57 0.48 0.26 0.30 

Source: Mukhopadhyay et al. (2020) 

 

Table 3: When the Study and Auxiliary Variables are Strongly Positively Correlated 
 

Estimators Population I, for 120=n  Population II, for 80=n  Population III, for 60=n  

0  1E  
2E  

0  1E  
2E  

0  1E  
2E  

n
y


 

 100 100  100 100  100 100 

SPT
 

0.47 156.98 90.26 0.47 150.53 86.55 0.47 147.50 84.80 

BT
 

0.01 109.42 62.91 0.01 99.37 57.13 0.01 95.09 54.67 

KSST  0.87 609.35 350.35 0.87 609.35 350.35 0.87 609.35 350.35 

BPT  0.74 1096.53 630.45 0.74 1348.27 775.19 0.74 1600.01 919.93 

 

Table 4: When the Study and Auxiliary Variables are Moderately Positively Correlated 
 

Estimators Population I, for 120=n  Population II, for 80=n  Population III, for 60=n  

0  1E  
2E  

0  1E  
2E  

0  1E  
2E  

n
y


 

 100 100  100 100  100 100 

SPT
 

0.56 110.66 96.43 0.56 105.23 91.70 0.56 102.72 89.51 

BT
 

0.01 853.21 743.48 0.01 810.01 705.83 0.01 789.79 688.22 

KSST  0.60 157.07 136.87 0.60 157.07 136.87 0.60 157.07 136.87 

BPT  0.53 198.57 173.03 0.53 225.65 196.63 0.53 252.73 220.23 
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Table 5: When the Study and Auxiliary Variables are Weakly Positively Correlated 
 

Estimators Population I, for 120=n  Population II, for 80=n  Population III, for 60=n  

0  1E  
2E  

0  1E  
2E  

0  1E  
2E  

n
y


 

 100 100  100 100  100 100 

SPT
 

0.56 90.99 89.36 0.56 86.53 84.98 0.56 82.94 82.94 

BT
 

** - - ** - - ** - - 

KSST  0.51 110.20 108.23 0.51 110.20 108.23 0.51 110.20 108.23 

BPT  0.51 302.97 297.54 0.51 400.52 393.34 0.51 498.07 489.14 

Note, ‘**’ represent Inadmissible, which implies 0  does not exist 

Table  6: Summary of results for real data set 

 
Estimators Population I Population II Population III Population IV 

0  1E  2E  
0  1E  2E  

0  1E  2E  
0  1E  2E  

n
y


 

 100 100  100 100  100 100  100 100 

SPT
 

0.50 

 

217.70 

 

148.86 

 

0.43 247.38 

 

174.97 

 

0.42 

 

258.02 

 

154.68 

 

0.64 

 

300.63 

 

186.86 

 

BT
 

0.23 

 

14.57 

 

4471 

 

** - - ** - - 0.39 

 

145572.5 

 

6189.59 

 

KSST  0.78 342.33 

 

234.08 

 

0.76 

 

5087.73 

 

3598.57 

 

0.88 

 

5025.13 

 

3012.56 

 

0.80 

 

218.60 

 

135.87 

 

BPT  0.60 

 

296.98 

 

205.57 

 

0.53 

 

2747.83 

 

1943.84 

 

0.50 

 

14085.66 

 

1566.56 

 

0.77 

 

241.02 

 

142.00 

 

Note, ‘**’ represent Inadmissible, which implies 0  does not exist



Applied Science, Computing and Energy, 2025, 3(3), 471-481 479 
 

        

 

(ii) Population II: Agricultural data from 

Murthy (1967);y: Area under wheat (1964); 

x: Area under wheat (1963); z: Cultivated 

area (1961). 

(iii) Population III: Literacy rate of India 

(Census, 2011) 

y, x, z: Literacy rates of India (2011, 2001, 

and female literacy 2011). 

(iv) Population IV: Abortion rates in the 

United States (CDC, 2008–2011); 

y, x, z: Abortion rates across U.S. states 

(2008, 2007, and 2005). 

8. 0 Results and Discussion 

Simulation Results 

Tables 3 to 4 summarized the performances 

of the four estimators across different 

correlation strengths. 

(i) Strong Correlation between the study 

and auxiliary variables 

From Table 3, when the correlation between 

the study and auxiliary variables is strong, the 

estimator of Bhushan and Pandey (2024) 

consistently yields a higher percent relative 

efficiency (PRE) with a moderate optimum 

unmatched proportion, followed by Tiwari et 

al. (2023). This indicates that both estimators 

are highly efficient in situations where 

auxiliary variables are strongly associated 

with the study variable. The estimators of 

Beevi (2018) and Singh and Pal (2017) show 

smaller optimum unmatched proportion 

values and lower PREs, implying less 

precision under strong correlations. 

(ii) Moderate Correlation between the 

study and auxiliary variables  

Under moderate correlation (Table 4), Beevi 

(2018) exhibits the minimum optimum 

unmatched proportion with a relatively 

higher PRE for all sample sizes. This 

suggests a reduction in survey cost 

accompanied by higher efficiency gains. It is 

followed by the estimators of Bhushan and 

Pandey (2024), Tiwari et al. (2023), and 

Singh and Pal (2017). 

(iii) Weak Correlation between the study 

and auxiliary variables  

In Table 5, where the correlation is weak, 

Beevi (2018) becomes inadmissible, 

suggesting instability or non-existence under 

such conditions. Bhushan and Pandey (2024) 

maintains higher efficiency, followed by 

Tiwari et al. (2023), with both estimators 

having the same optimal replacement values. 

Singh and Pal (2017) perform poorly as the 

correlation weakens. 
 

Real Data Results 

The real-data application results (Table 6) 

reinforce the findings from the simulation 

study. The estimators of Tiwari et al. (2023) 

and Bhushan and Pandey (2024) 

demonstrated consistent performance across 

all four populations, particularly under high-

correlation datasets (Populations I, II, and 

III), followed by Singh and Pal (2017). 

Beevi (2018) exhibited higher efficiency for 

Population IV but produced inadmissible 

values for Populations II and III, indicating 

sensitivity to the correlation structure. 

9.0 Conclusion 

This study provides a comprehensive 

empirical comparison of four prominent 

estimators for population mean estimation 

under two-occasion successive sampling. 

The findings reveal that: 

(i) Estimators’ efficiencies improve with 

increasing correlation strengths and 

sample sizes. 

(ii) The Bhushan and Pandey (2024) 

estimator performs best under both 

strong and weak positive correlations, 

followed by the estimator of Tiwari et 

al. (2023). 

(iii)Beevi (2018) exhibits robustness 

under moderate correlations, 

followed by Bhushan and Pandey 

(2024). 

(iv) The efficiency of Tiwari et al. (2023) 

remains stable across all sample sizes, 

implying consistent performance. 
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(v) Generally, estimators’ efficiencies 

decline as correlation weakens. 

(vi) No single estimator dominates under 

all conditions; thus, the choice of 

estimator should be guided by the 

expected correlation structure and 

data characteristics. 

These findings provide practical guidance for 

survey practitioners and researchers involved 

in the design and analysis of successive 

sampling studies. 
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