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Abstract:The proliferation of counterfeit and
unsafe  consumer-electronics ~ components
poses escalating risks to public safety,
industrial reliability, and national security.
Traditional document-based audits, post-hoc
recalls, and isolated certification programs
have proven insufficient for the speed, opacity,
and geographic dispersion of modern supply
chains. This study introduces B-A-G-S, an
integrated and privacy-preserving architecture
that combines Blockchain, Artificial
Intelligence, Geographic Information Systems,
and Smart Contracts to create a continuous,
verifiable, and adaptive system for detecting
and mitigating counterfeit activities. Using
simulation modeling informed by CPSC recall
records, EU RAPEX alerts, CBP seizure
statistics, and synthetic Shenzhen—Los Angeles
trade flows, the framework was evaluated
across three high-risk domains—unsafe power
adapters, defective lithium-ion batteries, and
counterfeit integrated circuits. Quantitative
results demonstrate substantial improvements
over conventional processes: Counterfeit
Penetration Rate decreased from 35—45% to 5—
7%, Time-to-Detection dropped from 60-90
days to 10-15 days, and the Recall Severity
Index declined from 0.78 to 0.23, while
maintaining acceptable operational overhead
(+6%). Economic analysis shows a Cost-
Benefit Ratio of 3.8:1, yielding positive returns
within two years of deployment. These findings
confirm that the symergistic combination of
blockchain integrity, Al anomaly scoring,
geospatial risk weighting, and adaptive smart-
contract enforcement can transform counterfeit
prevention from a reactive activity into a
proactive, intelligence-driven infrastructure of
trust. The work provides a scalable blueprint
for regulators, industry consortia, and
manufacturers  seeking  evidence-based,

machine-verifiable compliance mechanisms
aligned with emerging U.S. and international
supply-chain security mandates.
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1,0 Introduction

The global consumer-electronics industry,
valued at approximately US $1.21 trillion in
2024 and projected to reach US $1.78 trillion
by 2030 (Statista, 2024), depends on complex,
geographically dispersed supply chains that
involve raw-material extraction, component
fabrication, assembly, logistics, border
inspection, and retail distribution. At each
stage, vulnerabilities emerge in the form of
falsified materials, counterfeit subcomponents,
forged certificates, manipulated
documentation, and altered shipping data
(OECD, 2021). As consumer devices become
increasingly integrated into homes, medical
systems, industrial networks, and national
critical-infrastructure domains, the presence of
counterfeit or compromised components
presents escalating risks ranging from
electrical hazards and device malfunction to
privacy breaches, data infiltration, and large-
scale operational disruption (Bhasin & Sharma,
2020; U.S. DHS, 2020). Studies show that
counterfeit components—particularly
batteries, power adapters, and integrated
circuits—have been responsible for fires,
device failures, and security compromises that
result in substantial financial losses and
reputational damage to manufacturers (FDA,
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2022; UL, 2023). A single large-scale recall of
defective consumer-electronics components
can impose losses exceeding US $500 million
(McKinsey, 2023), highlighting the magnitude
of the challenge for both industry and
regulators.

Fig. 1 illustrates the end-to-end flow of
consumer-device production, beginning with
raw-material extraction and progressing
through component manufacturing, device
assembly, global logistics, border inspection,
and finally retail and consumer distribution. At
each stage, the diagram highlights specific
counterfeit-related vulnerabilities that can
compromise the integrity of the supply chain.
The raw-materials stage is susceptible to origin
fraud and the introduction of conflict-sourced
materials. During component manufacturing,
counterfeit chips and falsified certifications
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may infiltrate production lines. The device-
assembly phase faces risks including tampered
firmware and the use of unverified suppliers. In
the logistics stage, forged shipping manifests
and unauthorized route diversions can occur,
obscuring the true movement of goods. Border-
inspection processes are weakened by limited
inspection coverage and fraudulent tariff
filings, allowing malicious shipments to pass
undetected. Finally, at the retail and consumer
stage, counterfeit substitution can take place
within fulfillment channels. Overall, the figure
demonstrates how systemic weaknesses across
multiple stages of the supply chain create
opportunities for counterfeit infiltration and
underscore the need for integrated, tamper-
resistant security mechanisms such as the B-A-
G-S architecture.
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Fig. 1: Vulnerabilities Across the Consumer-Device Supply Chain

Growing evidence underscores that existing
detection and enforcement mechanisms remain
insufficient. Traditional certification systems
such as UL, FCC, and ISO primarily evaluate
device safety after manufacturing, leaving
early-stage sourcing and multi-tier supplier
risks unaddressed (UL, 2023). Customs and
border-control inspections cover only a small
fraction of global shipments due to resource
constraints (U.S. CBP, 2021), while supplier
audits frequently rely on paper or digital
documents that can be falsified or manipulated
(OECD, 2021). Moreover, most consumer
recalls occur only after unsafe products have
reached end wusers, making the approach
reactive rather than preventive (CPSC, 2023).

Literature in blockchain-enabled supply-chain
assurance has demonstrated potential for
tamper-evident provenance tracking (Kshetri,
2021; Casino et al., 2019), while separate lines
of research on artificial intelligence have
shown promise in detecting anomalous trade
flows and suspicious supplier behavior (Chen
& Lee, 2020). Geographic Information
Systems have been applied to map supply-
chain disruptions and assess region-specific
risk exposures (Ivanov & Dolgui, 2021). Smart
contracts have been proposed as mechanisms
for automating compliance and enforcing
predefined business rules (Christidis &
Devetsikiotis, 2016). Yet, despite these
advancements, existing research largely treats
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blockchain, Al, geospatial analysis, and
automated enforcement in isolation, resulting
in fragmented systems that fail to provide a
coordinated, end-to-end architecture capable of
preventing counterfeit infiltration at scale.

The problem that persists is the absence of an
integrated, operationally deployable
framework capable of unifying verifiable
provenance evidence, predictive analytics,
location-based risk assessment, and automated
enforcement into a cohesive system. Without
such an architecture, counterfeit batteries,
unapproved adapters, manipulated integrated
circuits, and other unsafe components continue
to penetrate global supply chains, undermining
consumer safety, inflating industry costs, and
exposing national infrastructure to
technological and security vulnerabilities
(Bhasin & Sharma, 2020; U.S. DHS, 2020).
This challenge has become even more
significant as U.S. national policies—including
Executive Order 14017 on supply-chain
resilience, NIST’s IoT cybersecurity labeling
program, and  strengthened  customs
enforcement—emphasize the need for
technological architectures that complement
regulatory measures by providing proactive,
real-time assurance (NIST, 2022; The White
House, 2021).

The gap in knowledge emerges from the lack of
holistic, multilayered systems that combine
tamper-resistant provenance, cryptographic
item—record bindings, Al-driven anomaly
detection, geospatial risk modeling, and smart-
contract enforcement within a unified
operational workflow. While prior studies offer
components of such a solution, no existing
research provides a fully integrated blueprint
that operationalizes these technologies into a
finite-state shipment model with standardized
interfaces linking manufacturers, logistics
providers, and regulators. Furthermore,
empirical assessments of such integrated
architectures—particularly simulations across
high-risk products like power adapters,
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lithium-ion batteries, and integrated circuits—
remain largely unexplored.

This study therefore aims to design and
evaluate B-A-G-S, a multilayered research
architecture that integrates Blockchain,
Artificial Intelligence, Geographic Information
Systems, and Smart Contracts into a single
system for preventing counterfeit infiltration in
consumer-device supply chains. The objective
is to define data schemas, cryptographic
bindings, AI models, geospatial risk indices,
smart-contract rules, and a finite-state shipment
model that together enable proactive, tamper-
resistant monitoring and automated compliance
throughout the lifecycle of device components.
By simulating the system across high-risk
product categories, the research evaluates how
integrated evidence, predictive analytics, and
automated enforcement can reduce counterfeit
penetration, shorten detection times, minimize
recall severity, and generate financial savings
for manufacturers(Olaleye et al., 2024:
Aboagye et al., 2022).

The significance of this study lies in providing
both a theoretically grounded and practically
deployable  architecture  that addresses
consumer-safety threats, economic losses, and
national-security  vulnerabilities associated
with counterfeit consumer-electronics
components. The findings contribute to
academic knowledge by demonstrating the
effectiveness of a combined blockchain-Al-
GIS-smart-contract framework and offer a
policy-aligned model that supports ongoing
U.S. efforts to strengthen supply-chain
resilience. By proposing a functional blueprint
that can be adopted by manufacturers, logistics
providers, and regulatory agencies, this study
advances a proactive solution for building
secure, transparent, and trustworthy consumer-
device supply chains.

2.0 Overview of the Global Electronics
Supply Chain

The global consumer-electronics industry,
valued at US $1.21 trillion in 2024 and

projected to reach US $1.78 trillion by 2030
2 ‘a' !‘\’ &
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(Statista, 2024), operates through a highly
fragmented and internationally distributed
supply-chain ecosystem. This system includes
raw-material sourcing, component
manufacturing, system integration, logistics
management, customs processing,
warehousing, and final product distribution.
Each stage of this chain generates extensive
transactional data and  documentation,
including certificates of origin, bills of lading,
component authentication reports, test-bench
results, and regulatory compliance declarations
(OECD, 2021). Because these processes
involve multiple parties with differing
standards, incentives, and digital capabilities,
the supply chain is vulnerable to intentional

manipulation or inadvertent data
inconsistencies.  Counterfeit components,
forged  certificates, falsified logistics

information, and unauthorized substitutions
have become increasingly sophisticated—
posing not only economic risks but also
significant safety and cybersecurity concerns
(Bhasin & Sharma, 2020; U.S. DHS, 2020).
The proliferation of counterfeit parts such as
batteries, microchips, power adapters, and
other safety-critical modules has led to fires,
device failures, cybersecurity breaches, and
large-scale recalls (FDA, 2022; UL, 2023).
Such incidents have direct consequences for
manufacturers, including financial losses,
reputation damage, regulatory sanctions, and
product-liability liabilities. Industry analyses
show that a single large-scale recall tied to
upstream component failure can impose losses
exceeding US $500 million (McKinsey, 2023).
These challenges highlight the urgent need for
supply-chain systems that ensure traceability,
transparency, verifiability, and tamper-resistant
data integrity across all tiers—from extraction
of raw materials to end-user delivery.

2.1 Counterfeit Risks and Integrity Failures
in Electronics Supply Chains

Counterfeit electronic components enter supply
chains through a variety of pathways, including
reverse  logistics, grey-market trading,

unauthorized  subcontractors, and  the
breakdown of chain-of-custody oversight
(Wiley & Lee, 2021). Many of these
components are visually indistinguishable from
legitimate ones but exhibit substandard
electrical performance or compromised
firmware. In safety-critical domains—such as
medical devices, defense electronics, and smart
infrastructure systems—even minor deviations
can lead to catastrophic failures (GAO, 2022).
The rise of online marketplaces and globalized
shipping networks has further eased the
circulation of counterfeit parts. Weak
authentication protocols, manual
documentation, and non-standardized record-
keeping practices undermine real-time
verification efforts (Hampton et al., 2020). As
product designs become more modular and
reliant on integrated circuits, power-
management systems, and embedded software,
the consequences of integrity failures extend
beyond physical malfunction to digital
compromise and privacy violation (Liang &
Yu, 2021).

While governments and industry consortia
have introduced compliance frameworks—
such as ISO 17025 testing standards, UL
verification programs, and the CFSI
Responsible Minerals Assurance Process—
these mechanisms remain largely siloed,
inconsistently implemented, and vulnerable to
falsified reporting (UNCTAD, 2021). There
remains a critical gap for technologies that
ensure synchronized, tamper-proof, end-to-end
traceability.

2.2 Blockchain for Supply-Chain Traceability
Blockchain technology has emerged as a
leading candidate for improving traceability in
complex supply-chain environments. Its core
attributes—immutability, decentralization,
consensus-based validation, and cryptographic
integrity—provide a trustworthy ledger for
recording product histories and transactional
data (Crosby et al., 2016; Yli-Huumo et al.,
2016). By distributing records across multiple
nodes, blockchain systems make data
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tampering economically and technically
prohibitive without network-wide consensus.
Applications of blockchain for traceability
have been widely explored in agriculture (Tian,
2017), pharmaceuticals (Mackey & Nayyar,
2017), automotive systems (Helo &
Shamsuzzoha,  2020), and electronics
manufacturing (Wang et al, 2019).
Blockchain-enabled traceability  solutions
allow stakeholders to track component origin,
authenticate certifications, verify regulatory
compliance, and audit logistics movements in
real time (Saberi et al., 2019). In addition,
blockchain-based identity mechanisms for
components—such  as  digital  twins,
cryptographic  identifiers, and material
passports—facilitate  continuous  tracking
across global chains (Kshetri, 2021).

However, classical blockchain
implementations face challenges including
scalability, privacy management,
interoperability, and energy consumption
depending on the chosen consensus protocol
(Casino et al.,, 2019). These constraints
motivate the integration of smart contracts, off-
chain data systems, and hybrid consensus
models to improve practical applicability in
fast-moving electronics supply chains.

2.3 Smart Contracts
Smart contracts—self-executing code stored on
a blockchain—automate verification,

enforcement, and execution of predefined rules
across distributed participants (Buterin, 2015;
Christidis & Devetsikiotis, 2016). They have
been proposed as a mechanism for reducing the
delays, fraud risks, and human-driven
inconsistencies that characterize traditional
supply-chain documentation.

In the electronics sector, smart contracts can
automatically validate test results, ensure
component authenticity, trigger payments upon
successful delivery, enforce quality-control
thresholds, and coordinate = multi-party
approval processes (Rejeb et al., 2022). For
example, when a component passes laboratory
verification or receives a digital certificate of

497

conformity, a smart contract can commit this

information to  the  blockchain  and

simultaneously notify downstream partners.

Conversely, failed inspections can trigger

automated quarantines or halt production

workflows (Pournader et al., 2020).

Smart contracts also enhance data consistency

by minimizing manual entry and eliminating

reliance on centralized databases susceptible to
manipulation (Xu et al, 2021). Their
integration with IoT sensors and machine-
readable labels—such as RFID, QR-enabled
cryptographic tags, and digital signatures—
supports real-time status monitoring and
cryptographically verifiable chain-of-custody
records (Viriyasitavat et al., 2020). Despite
these advantages, challenges remain regarding
privacy protection, software vulnerabilities,
governance models, and integration with

legacy enterprise systems (Atzei et al., 2017,

Zhiguang et al., 2019). Nonetheless, smart

contracts are recognized as a critical

component of next-generation supply-chain
trust frameworks.

2.4 Integrated Approaches and Gaps in the

Literature

Recent research increasingly emphasizes

hybrid architectures that combine blockchain,

IoT, digital forensics, and Al-driven anomaly

detection to address multifaceted supply-chain

threats (Hald & Kinra, 2019; Treiblmaier,

2021). Integrated systems can link physical

sensors ~ with  cryptographic  identifiers,

automate transactions via smart contracts, and
deploy machine-learning models to detect
counterfeit behavior patterns, such as abnormal
shipping routes or inconsistent test results

(Leng et al., 2021). These approaches offer

promising pathways for enhancing resilience,

transparency, and risk intelligence in global
electronics ecosystems.

However, key gaps persist in the literature:

(i) Limited research on electronics-
specific counterfeit patterns :Most
studies focus broadly on supply-chain
management or other industries, with

A, ‘ag.:
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insufficient emphasis on the unique

failure modes of  electronic
components.
(ii) Fragmented implementations

lacking end-to-end integration:
Many proposed systems evaluate
blockchain, IoT, or smart contracts
in isolation rather than designing

coordinated, interoperable
architectures.

(iii)  Insufficient attention to security,
privacy, and regulatory

alignment: Challenges associated
with commercial confidentiality,

GDPR-compliant data
minimization, and cross-border
certification ~ protocols  remain
underexplored.

(iv)  Lack of empirical validation:Few
studies test their models in real-
world industrial environments
involving multiple tiers of suppliers
and regulatory bodies.

v) Underdeveloped forensic-
readiness frameworks: There is a

scarce  integration of digital
forensics—essential ~ for  post-
incident investigation—with
blockchain-based traceability
systems.

These gaps underscore the need for

comprehensive, domain-specific frameworks
that incorporate blockchain, smart contracts,
advanced identity mechanisms, sensor-driven
data collection, and forensic-ready
architectures to secure electronics supply
chains. The present study aims to contribute to
this emerging research direction.

3.0 Methodology
3.1 System Architecture Overview

The B-A-G-S framework—DBJlockchain,
Artificial Intelligence, Geographic Information
Systems, and Smart Contracts—is structured as
a four-layer architecture in which integrity,
intelligence, spatial context, and automated

enforcement operate sequentially while
reinforcing one another. Data from all actors
enters the system through a shared integration
bus that harmonizes formats and protocols.
Outputs generated by the Al and GIS layers are
written back to the blockchain, forming a
closed evidentiary loop where analytic insights,
risk scores, and enforcement decisions become
tamper-evident records.
To demonstrate the operational workflow, this
study follows a representative shipment,
Shipment S-001, consisting of 10,000 phone
chargers (SKU AC-45W) manufactured in
Shenzhen and shipped to Los Angeles. This
shipment serves as a narrative anchor for
illustrating how each layer contributes to
counterfeit detection and  supply-chain
assurance.
Figure 2 (placed immediately after this
subsection) presents the overall system
architecture. The diagram positions Shipment
S-001 at the center, surrounded by the four
functional layers. At the foundation, the
Blockchain  Layer secures provenance
artifacts—including  Bills of  Materials
(BOMs), certificates, tarift proofs, and custody
transfers. To the left, the Al Layer evaluates
pricing irregularities, misaligned logistics
patterns, and behavioral anomalies. To the
right, the GIS Layer maps origins, transit
routes, and geospatial risk indicators such as
counterfeit hotspots or diversion-prone
corridors. At the top, the Smart Contract Layer
automates release, hold, or quarantine
decisions based on consensus rules. Directional
arrows represent the integration bus linking
layers, while vertical feedback loops depict
analytic outputs being committed back to the
blockchain, ensuring that the Counterfeit Risk
Index (CRI), Geospatial Risk Score (GRS), and
enforcement actions form permanent records.
Fig. 2 presents the overall system architecture
of the proposed B-A-G-S framework and
illustrates  how  Blockchain,  Artificial
Intelligence, Geographic Information Systems,
and Smart Contracts are integrated into a
,
S
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unified, end-to-end counterfeit-prevention
infrastructure. As shown in Fig. 2, a
representative shipment (Shipment S-001) is
positioned at the center of the architecture to

499

demonstrate how data generated throughout the
supply chain is captured, analyzed, and
enforced across multiple technological layers
through a shared data-flow and integration bus.

Smart Contract Layer

« Automated Actions

+ Release / Hold

« Quarantine Rules

<

Data Flow & Integration Bus

- Anomaly Detection
« Price Analysis
« Logistics Patterns

Counterfeit Risk Index (CRI)

Enforcement Decisions

Verified Outputi
Blockchain Layer
Immutable Ledger

> GIS Layer

= Location Mapping

« Route Monitoring
+ Risk Hotspots

Geospatial Risk Score (GRS)

1

Tariff
Records

B Custody Tracking

E BOMs &
Certificates

Secure Provenance

Fig. 2. System Architecture of the B-A-G-S Framework

The figure highlights the complementary roles
of the four layers. The Blockchain layer forms
the foundation of the architecture, providing an
immutable ledger for provenance artifacts such
as bills of materials, conformity certificates,
tariff records, and custody-transfer events. The
Al layer operates in parallel to analyze
transactional, pricing, and logistics data,
generating a Counterfeit Risk Index (CRI)
based on detected anomalies and behavioral
inconsistencies. In parallel, the GIS layer
enriches the system with spatial intelligence by
mapping origins, transit routes, and known
counterfeit or diversion hotspots, producing a
Geospatial Risk Score (GRS). At the top of the
architecture, the Smart Contract layer translates
verified data and analytic outputs into
automated enforcement actions, including
shipment release, temporary holds, or
quarantine decisions.

Finally, Fig. 2 demonstrates that the strength of
the B-A-G-S framework lies in its closed-loop

design, where analytic insights from the Al and
GIS layers are written back to the blockchain
as tamper-evident records and subsequently
consumed by smart contracts for enforcement.
This bidirectional flow ensures that risk
assessment, spatial context, and compliance
actions are cryptographically linked to the
underlying provenance data, transforming
counterfeit detection from a fragmented,
reactive process into a proactive and verifiable
system of trust across the consumer-device
supply chain.

3.2 Blockchain Layer:
Integrity

The lifecycle of Shipment S-001 begins when
Supplier A prepares the batch documentation.
The Bill of Materials (BOM) for batch B-7782
and the corresponding UL safety certification
(UL-CERT-9981) are hashed and recorded on
the blockchain as the shipment’s first
immutable entries. When Carrier X accepts

%o
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custody of container MSCU1234567, the
custody-transfer event is appended as a
digitally signed transaction. Upon arrival in the
destination port, the importer submits proof of
tariff payment, which is similarly hashed and
anchored on-chain.

Unlike many existing blockchain pilots that
focus narrowly on product origin, the proposed
system requires multi-actor, cross-verified
attestations. Each stakeholder —manufacturer,
accredited testing laboratory, logistics carrier,
and importer—submits  cryptographically
signed evidence tied to the same shipment
identifier. This interdependence ensures that
any falsified or missing evidence (e.g., a
manipulated certificate) collapses the chain of
trust, triggering automated risk escalation.

Fig. 3 illustrates the blockchain-anchored
provenance ledger for Shipment S-001 and
demonstrates how critical supply-chain events
are recorded as an immutable, chronological
sequence of blocks. As shown in Fig. 3, the
shipment’s lifecycle is represented through
four sequential blocks corresponding to the bill
of materials (BOM) hash, UL certificate hash,
custody-transfer record, and tariff-payment
proof. Each block is cryptographically linked
to the preceding one using hash pointers,
creating a tamper-evident chain that documents
the shipment’s progression from the
manufacturing floor to the point of entry.

The figure emphasizes that every block is
timestamped and digitally signed, ensuring

non-repudiation and traceability of all
provenance events associated with the
shipment. Importantly, only  hashed

fingerprints and minimal metadata are stored
on the blockchain, while the underlying
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documents remain off-chain. This design
preserves commercial confidentiality and
regulatory privacy requirements while still
enabling rapid detection of any attempted
alteration, as even minor changes to source
documents would result in mismatched hashes.
Overall, Fig. 3 demonstrates how blockchain
functions as a secure evidentiary backbone
within the B-A-G-S architecture. By binding
component identity, certification = status,
logistics custody, and tariff compliance into a
single immutable ledger, the framework
ensures that provenance verification is
continuous rather than episodic. This approach
strengthens counterfeit detection, enhances
auditability for regulators and manufacturers,
and supports risk-aware enforcement decisions
by downstream smart contracts, thereby
reinforcing trust and integrity across the
consumer-device supply chain.

To balance transparency with confidentiality
requirements, only hashed summaries and
minimal metadata are committed on-chain,
while complete documents (e.g., certificates,
invoices, test spreadsheets) remain encrypted
in secure off-chain storage. A permissioned
blockchain model (e.g., Hyperledger Fabric)
restricts read/write privileges to authorized
entities such as regulators, OEMs, test
laboratories, and logistics partners. Role-based
visibility ensures that actors access only the
portions relevant to their responsibilities—for
example, carriers may view custody transfers
but not proprietary BOM details. This approach
reduces exposure to supply-chain espionage
and aligns with data-governance frameworks
such as GDPR, ISO 27001, and national data-
localization requirements.
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Fig. 3: Privacy-Preserving Blockchain Provenance Ledger for Shipment S-001

The JSON fragment presented in Appendix A.1
demonstrates how a UL certification record is
represented on the ledger. Instead of storing the
full PDF, the system records only a
cryptographic fingerprint—such as the hash
value “sha256:2c4b...f9al”—which binds the
document to a permanent, tamper-evident
ledger entry. Any attempt to alter the certificate
after issuance would result in a mismatch
between the recalculated hash and the value
stored on-chain, enabling instant forgery
detection without revealing the document’s
complete contents.

The novelty of the blockchain layer lies in its
departure from provenance-only models
toward a multi-actor attestation design
anchored with privacy safeguards. By binding
interdependent evidence—including the Bill of
Materials, safety certification, custody records,
and tariff proofs—with hash-level privacy

pilots that typically prioritize visibility at the
expense of commercial secrecy.

3.3 AI Layer: Anomaly Detection

Once the shipment-level evidence is committed
to the ledger, the AI layer evaluates each
shipment for statistical irregularities across
pricing, routing, timing, and actor-behavior
patterns. For Shipment S-001, the system
identified a 20 percent increase in transit
duration and a 15 percent deviation in cost per
kilogram, resulting in a Counterfeit Risk Index
(CRI) of 0.42. These deviations triggered an
anomaly alert based on multidimensional
comparisons with baseline patterns.

Fig. 4 visualizes this process using a two-
dimensional scatter plot. Most shipments
appear clustered in green around expected
norms, whereas Shipment S-001 is represented
as a red outlier positioned in the upper-right

protection, metadata minimization, and quadrant. Its horizontal displacement reflects
permissioned access, the system achieves a rare the excessive transit time, and its vertical
balance between verifiability and  displacement corresponds to the abnormal

confidentiality. This combination addresses
limitations in earlier supply-chain blockchain

cost-per-kilogram value. A label above the
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point displays “CRI = 0.42,” directly linking
the anomaly to its computed risk score.
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Cost Per Kilogram (USDykg)

$4.4 o 2

7 10 12 14 18

Shipment S-001
CRI = 0.42
21 24 27 28

Transit Time (days)

Fig. 4: Transit time and cost-per Killogram Anomalies

To protect sensitive commercial information,
the Al models analyze only hashed identifiers
and anonymized numerical features rather than
raw invoices or contracts. For example, the
system processes percentage deviations in
pricing rather than the contract price itself, and
deviation in routing behavior instead of actual
geolocation logs. Explanations generated by
the model are recorded as categorical
descriptors—such as “route deviation” or
“pricing anomaly”—so that the model provides
transparency without exposing proprietary
trade details.

This logic, described fully in Appendix A.2,
uses a hybrid of supervised and unsupervised
anomaly-detection techniques. The decision
threshold 0 adjusts dynamically based on the
GIS-derived risk score, such that shipments
originating from higher-risk geographies
undergo stricter scrutiny. This contrasts with
conventional anomaly detection systems,
which typically evaluate logistics data in
isolation. Here, cross-layer features from
blockchain attestations and GIS scores enable
richer, context-aware  detection  while
preserving confidentiality by processing only
pattern-level information.

3.4 GIS Layer: Geospatial Risk Context and
Confidentiality

Geography remains a major determinant of
counterfeit exposure, and the GIS layer
integrates spatial information with enforcement
histories, governance indices, and known
counterfeit hotspots to compute a Geospatial
Risk Score (GRS). For Shipment S-001, the
origin in Shenzhen—a region with high
counterfeit  incidence and  moderate
enforcement—resulted in a GRS of 0.48.

Fig. 5 displays a global risk map shaded from
green (low risk) to red (high risk). Trade flows
appear as directional arrows, with Shenzhen
highlighted in orange-red and annotated with
“GRS = 0.48.” Along the path from SZX —
YTN — LAX, transshipment points are shown
as circular markers whose size correlates with
transit volume. The visualization demonstrates
that S-001’s geographic origin significantly
elevates its inherent risk relative to shipments
departing from regions such as Frankfurt or
Seoul.
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Fig. 5: Geospatial Risk Map of S-001’s
Transit Route

To maintain confidentiality of routing patterns,
the GIS layer relies on aggregated governance
indicators and counterfeit-incident frequencies
rather than fine-grained GPS traces. Shipment-
level data are abstracted into weighted
coordinates and regional risk scores, providing
actionable insight without exposing sensitive
routing information or violating data-
localization requirements.

The scoring logic follows the functional
structure outlined in Appendix A.3, where risk
is computed as a function of counterfeit
incident frequency (C), political instability (P),
transshipment ~ vulnerability  (T), and
enforcement strength (E). For S-001, the high
value of C combined with weaker enforcement
conditions contributed to a GRS of 0.48. The
novelty of this layer is its transformation of GIS
from a passive visualization tool into a
dynamic enforcement input, where GRS values

actively shape Al thresholds and Smart
Contract decisions.
3.5 Smart Contract Layer: Adaptive

Enforcement with Confidentiality

At the Port of Los Angeles, the Smart Contract
layer executes adaptive enforcement rules for
Shipment S-001. Although the certificate and
tariff proofs wvalidate successfully, the
combined risk parameters—CRI = 0.42 and
GRS = 0.48—produce a threshold of 6 = 0.302,
meaning the shipment exceeds the permissible
risk boundary. As a result, the Smart Contract
automatically issues a Quarantine decision.

Fig. 6 depicts this workflow as a decision tree.
The shipment passes initial document-
verification checks via green pathways. At the
adaptive-threshold node, the condition CRI >0
redirects the evaluation along a red path leading
to a “Quarantine” outcome. A lower CRI would
have resulted in a green “Release” outcome.
This illustrates how enforcement dynamically
adjusts based on the combined intelligence
generated by preceding layers.

NO (Mistmach) T & HOLD
Lo (Fraud Detected)
-

Adaptive
Throshald Check
(Smart Contract)
Is CRI 2 67

Document
Verification
(Blockehain
Layer)

YES (0.42 = 3.02)

lid)
Calculate 6 = f{GRS, CRI)

CRI=0.42
GRS = 0.481
Calculated 8 = 0.302)

NO (0.42 Valid) YES (0.42 = 3.02)

FINAL ACTION:
QUARANTINE O

‘ Green Path: Compliance / Red Path: Anoamy/Risk

0: Adaptive Risk Threshold

Fig. 6: Adaptive Enforcement Decision Tree
for Shipment S-001

Throughout the process, the Smart Contract
evaluates only cryptographic proofs and
boolean validation conditions. The underlying
content of certificates, contracts, or tariff
records is never revealed to the verifier or
external stakeholders. This ensures
confidentiality = while  maintaining  full
compliance transparency. The structure shown
in Appendix A.4 requires that all categories of
evidence—provenance, certification, tariff, and
custody—be present before a shipment may
proceed, creating an enforcement mechanism
that is both strict and privacy-preserving.

The novelty here lies in replacing conventional
static checklists with dynamic, evidence-
sensitive  enforcement. Smart Contracts
respond not only to the presence or absence of
required documents but also to contextual risk
scores, allowing for more nuanced and
S
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intelligent decision-making without exposing
proprietary business documents.

3.6 Integration and Interoperability with
Privacy Controls

The final integration layer links all components
of the B-A-G-S framework into a closed
evidentiary  loop.  Blockchain  secures
provenance, Al computes CRI, GIS generates
GRS, and Smart Contracts determine
enforcement outcomes. Importantly, the
outcomes themselves are written back to the
blockchain, completing the lifecycle of the
shipment within a coherent, auditable system.
For Shipment S-001, the ledger now includes
not only the hashes of the BOM, safety

Record Analytic Outputs #
(CRI[CGS)

Al Layer:
Anocomly @ri)
Detection & CRI

Feeds

Input, Provennce Data,
Soecess MI. Mobile

Output: Counttsfelt Risk
Index (CRI)

Smart Contract Layer:
Enforcement Decision

Logic. 1F CRI = & THEN

Quarartine
ELSE. Release”

System Intelligence
Strengthers Over Time
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certificate, custody record, and tariff proof, but
also the computed risk metrics (CRI = 0.42 and
GRS = 048) and the final decision
(Quarantine).

Fig. 7 illustrates this feedback loop. On the
left, the Al layer contributes the CRI; on the
right, the GIS layer contributes the GRS; at the
top, the Smart Contract layer issues its
decision; and at the bottom, the blockchain
records the complete evidentiary trail. The
circular arrowing emphasizes that future
analyses and decisions will incorporate these
logged outcomes, strengthening system
intelligence over time.

£
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Fig. 7. The B-A-G-S Framework Closed-Loop Feedback System: Integration of Analytic
Intelligence and Immutable Ledgering for Continuous Improvement

To safeguard confidentiality, only numeric
scores and decision outcomes are logged on-
chain, not the raw features or proprietary
routing information used in their calculation.
The API gateway mediates interoperability so
that regulators may audit outcomes while
OEMs and logistics providers access only the
elements relevant to their roles. This ensures
transparency, accountability, and regulatory

compliance without unnecessary disclosure of
sensitive trade or routing data.

3.7 Methodological Novelty

The novelty of the B-A-G-S framework is
demonstrated collectively in Figures 2 through
7 and is strengthened by the privacy-preserving
design elements integrated throughout all
layers. The blockchain layer introduces multi-
actor attestations with hash-only storage and
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permissioned access; the Al layer employs
cross-layer  anomaly  detection  using
anonymized features rather than raw inputs; the
GIS layer converts spatial risk factors into
quantitative enforcement parameters without
revealing shipment-level routes; the Smart
Contract layer enforces adaptive, context-
sensitive rules based solely on proofs and
scores; and the integration layer immutably
records outcomes using minimal metadata to
ensure confidentiality. The case of Shipment S-
001 shows how a high-risk shipment can be
identified, quarantined, and reviewed using
evidence that is simultaneously tamper-proof
and privacy-protected, demonstrating the
practical viability of the B-A-G-S architecture.

4.0 Evaluation and Results

The B-A-G-S framework was evaluated using
simulation-based modeling and comparative
analysis designed to approximate real-world
supply-chain conditions. Because global
deployments remain logistically complex and
subject to jurisdictional constraints, the
assessment relied on realistic data derived from
industry recall archives, customs seizure
reports, and public international trade datasets.
Three representative product domains—unsafe
power adapters, defective lithium-ion batteries,
and counterfeit integrated circuits—were
selected due to their high incident frequency,
significant consumer-safety implications, and
elevated regulatory scrutiny. Each domain was
modeled as a full-lifecycle scenario passing
through all layers of the B-A-G-S architecture,
beginning with blockchain-based evidence
capture and progressing through Al anomaly
detection, geospatial risk assessment, and
smart-contract enforcement. Baseline
performance was measured against
conventional audit-driven processes, including
document verification, sample inspections, and
post-hoc recall procedures.

4.1  Results and Discussion

The evaluation utilized a finite-state shipment
model in which every shipment transitioned
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sequentially through the stages of registration,
verification, transit, clearance, and either
release or quarantine, depending on
compliance outcomes. Inputs for the simulation
were derived from historical recall records
from CPSC and EU RAPEX (2015-2024),
customs seizure statistics from U.S. CBP and
OECD illicit-trade reports, aggregated datasets
on manufacturing defects and warranty claims,
and synthetic trade-flow data modeling
Shenzhen—Los Angeles routes based on UN
Comtrade and World Bank logistics indices.

Performance was assessed using metrics
designed to capture both risk reduction and
operational efficiency. These included the
Counterfeit Penetration Rate, representing the
proportion of fraudulent units that reached the
market; Time-to-Detection, measuring the
elapsed time between production and
identification of counterfeit activity; the Recall

Severity Index, representing normalized
financial and safety impacts; Operational
Overhead, representing additional

computational or procedural burden introduced
by the model; and a Cost-Benefit Ratio that
compared implementation expenses against
savings achieved from averted recalls.
Simulation parameters informing these metrics
are summarized in Table 1,

Case Scenarios

The first scenario evaluated unsafe power
adapters, a category historically associated
with high levels of forged UL certifications.
Baseline recall statistics show that nearly one-
fifth of imported adapters either failed
compliance testing or carried falsified labels.
Within the B-A-G-S environment, the
blockchain layer prevented most forged
certifications from registering at the point of
origin, filtering the majority of falsified entries.
The Al layer subsequently flagged shipments
with abnormal cost-per-watt patterns, while the
smart-contract module automatically
quarantined lots that exceeded established risk
thresholds. As a result, counterfeit penetration
declined sharply from 18 percent to 2.6 percent,

s&a,
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and the average detection period improved
from seventy-two days to eleven.

The second scenario examined defective
lithium-ion batteries, a product group with
historically severe recall consequences due to
thermal-runaway risks. In this case, the GIS
layer increased baseline risk scores for
suppliers operating in regions with documented
substandard recycling or material-recovery
practices, while the AI module correlated
shipment-temperature logs and insurance claim
histories to identify anomalies. Smart contracts
required the presence of hashed safety-test
results before clearing shipments. These
combined controls increased detection
performance by a factor of 4.5 and reduced
average recall costs by more than forty million
dollars annually for each manufacturer
represented in the dataset.

The third scenario focused on counterfeit
integrated circuits, one of the most critical
national-security concerns in the electronics
supply chain. Multi-actor attestations within
the blockchain linked wafer-fabrication
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certificates  with  distributor  identifiers,
ensuring dependency across evidence sources.
Al algorithms detected suspicious route
diversions inconsistent with authorized
logistics paths, and smart contracts flagged
mismatched origin signatures for mandatory
regulator review. Counterfeit infiltration
declined from 12 percent to less than 1 percent,
and inspection lead times improved by
approximately two-thirds.

4.2 Quantitative Results,
Discussion

The comparative performance of the B-A-G-S
framework relative to conventional supply-
chain monitoring approaches is summarized in
Table 1, which presents the core metrics
evaluated in this investigation. The table
highlights the magnitude of improvement
across counterfeit detection, operational
efficiency, incident severity, and economic
impact, demonstrating how the integrated
design substantially enhances supply-chain
resilience and regulatory compliance.

Metrics and

Table 1. Quantitative Performance Comparison Between Conventional Approaches and the

B-A-G-S Framework

Metric Baseline B-A-G-S Improvement
(Conventional) Framework

Counterfeit Penetration Rate 35-45 % 5-7 % 1 ~85%

(CPR)

Time-to-Detection (TTD) 60-90 days 10-15 days 1 ~80 %

Recall Severity Index (RSI) 0.78 avg 0.23 avg 170 %

Operational Overhead (OH) — +6 % —

Cost-Benefit Ratio (CBR) — 3.8:1 Positive ROI

The results presented in Table 1 indicate that
the integrated architecture of the B-A-G-S
framework provides substantial performance
gains over traditional, document-based supply-
chain oversight mechanisms. The Counterfeit
Penetration Rate, which reflects the proportion
of fraudulent or unsafe units entering the
market, declined from a baseline range of 35—
45 percent to just 5—7 percent after applying the
framework. This reduction of approximately 85
percent demonstrates the effectiveness of

combining blockchain-anchored authenticity
verification with Al-driven anomaly detection
and smart-contract enforcement. The result
confirms that counterfeit infiltration is most
effectively controlled when provenance
integrity, real-time intelligence, and automated
decision rules operate cohesively rather than in
isolation.

A similarly pronounced improvement is
observed in  Time-to-Detection, which

decreased from the conventional window of
'5: \a' w‘\:j: R
e



Applied Science, Computing and Energy, 2025, 3(3), 493-511 507

two to three months to only ten to fifteen days.
This acceleration—an approximate 80 percent
reduction—results from the system’s ability to
monitor risk indicators continuously. Al
models identify unusual price patterns,
inconsistent logistics routes, or aberrant
temperature profiles, while GIS-based risk
weighting directs attention to high-risk supplier
regions. Faster detection limits consumer
exposure, reduces the scale of recalls, and
enables targeted, rather than broad, regulatory
interventions.

The Recall Severity Index, a composite
measure capturing both financial impact and
consumer safety risk, decreased from an
average value of 0.78 to 0.23, representing a
reduction of about 70 percent. This result
indicates that devices flagged by the B-A-G-S
system tend to be intercepted earlier in the
supply chain, before widespread distribution or
customer injury occurs. The mitigation effect is
amplified by the immutable audit trail recorded
on the blockchain, which allows regulators or
manufacturers to pinpoint specific lots or
suppliers rather than initiating broad, costly
recalls.

The framework introduces a modest
Operational Overhead of approximately 6
percent, stemming from the cryptographic
commitments, model inference cycles, and
smart-contract executions required to sustain
the system. However, this overhead is offset by
a highly favorable Cost-Benefit Ratio of 3.8:1.
This means that for every dollar invested in
deploying and maintaining the B-A-G-S
infrastructure, organizations save nearly four
dollars in avoided recall costs, reduced liability
exposure, and streamlined compliance
activities. The economic benefits materialize as
early as the second operational year and
increase as shipment volumes scale.

The improvements shown in Table 1 have
several critical implications for supply-chain
security, enforcement policy, and industrial risk
management. First, the drastic reduction in
counterfeit  penetration  confirms  that

counterfeiters exploit gaps between isolated
verification steps—gaps that disappear when
evidence, analytics, geospatial context, and
enforcement are fused into a closed-loop
system. The B-A-G-S framework thus
addresses the structural weaknesses of today’s
fragmented oversight environment and
provides a pathway for industries seeking
verifiable, real-time trust.

Second, the accelerated detection timelines
offer a practical advantage for regulatory
bodies such as U.S. Customs and Border
Protection, the Federal Trade Commission, and
standards organizations like NIST. A detection
window of ten to fifteen days aligns with the
operational tempo of modern logistics,
enabling intervention at ports, distribution
hubs, or even before international departure.
This supports proactive enforcement of
policies under Executive Order 14017 and
emerging loT-labeling and supply-chain
transparency requirements.

Third, the reduced recall severity reflects the
system’s capacity to transform compliance
from a retrospective audit activity into a
continuous surveillance and early-warning
mechanism. This transformation aligns with
global calls for risk-aware supply-chain
governance, particularly in critical technology
sectors such as consumer electronics, battery
systems, and semiconductor components.
Finally, the strong economic performance
suggests that the B-A-G-S architecture is not
merely a compliance cost but an operational
investment with measurable financial returns.
For manufacturers, importers, and logistics
firms, the framework offers an incentive-
compatible alternative to costly recalls,
reputational damage, and regulatory penalties.
The results demonstrate that the strength of the
B-A-G-S framework lies in integration rather
than in the isolated performance of its
constituent technologies. Blockchain or Al
alone provided only incremental
improvements, but when combined with GIS-
based context modeling and automated smart-
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contract enforcement, the architecture
generated exponential reductions in counterfeit
penetration and substantial gains in detection
speed. Multi-actor evidence capture eliminated
single points of failure in documentation, and
the geospatial risk system enabled adaptive
thresholding that responded dynamically to
changes in trade-route conditions or supplier
reputation.

The system also proved economically viable:
despite initial setup and computational
demands, operational savings and reductions in
liability enabled a positive return on investment
within the second year of deployment.
Scalability tests involving fifty thousand
simulated shipments maintained sub-second
validation performance on a permissioned
blockchain, demonstrating feasibility for
industrial adoption. Overall, the findings
illustrate that the B-A-G-S framework provides
measurable improvements in supply-chain
security, efficiency, and regulatory resilience,
establishing a practical blueprint for countering
fraudulent or unsafe consumer devices.

5.0 Conclusion

The growing prevalence of counterfeit and
unsafe consumer-device components poses
significant threats to public safety, economic
competitiveness, and national security.
Traditional safeguards—such as document-
based audits, certification labels, and reactive
recall mechanisms—struggle to match the
speed and complexity of globalized production
networks. In response, this research introduced
B-A-G-S, a multilayered architecture that
brings together blockchain-based integrity, Al-
driven intelligence, geospatial risk modeling,
and smart-contract enforcement to build a
proactive and verifiable system of trust across
the supply chain.

The study advances the field in four key ways.
First, it provides a deployable architectural
blueprint that integrates technological layers
into a unified evidence cycle, ensuring that
analytical outputs become permanent and
auditable records. Second, it presents a

rigorous evaluation methodology using
realistic scenarios involving power adapters,
lithium-ion batteries, and integrated circuits,
demonstrating  substantial reductions in
counterfeit penetration and marked
improvements in detection speed. Third, it
bridges technical design with policy
imperatives by encoding compliance logic in
smart  contracts, translating regulatory
mandates  into  automated enforcement
mechanisms. Fourth, it introduces a privacy-
preserving governance model that balances
transparency with confidentiality through
hybrid on-chain and off-chain  data
management. Together, these contributions
redefine how traceability, compliance, and risk
management can be engineered in modern
supply-chain systems.
The work remains subject to several
constraints. The evaluation relies on simulated
rather than full-scale industrial deployments,
and system performance depends heavily on
the accuracy of upstream data sources. Legal
recognition of blockchain-anchored evidence
varies across jurisdictions, creating uncertainty
in transnational enforcement. Additionally,
integration  costs and  legacy-system
dependencies may slow adoption, particularly
among smaller suppliers with limited digital
infrastructure. Recognizing these limitations
clarifies the direction for future validation and
policy engagement.
Several avenues for further research emerge
from these findings. Future work will involve
field pilots undertaken with regulatory partners
such as U.S. Customs and Border Protection
and NIST-accredited laboratories to evaluate
real-world throughput, latency, and evidentiary
reliability. The architecture will be extended to
incorporate digital-twin systems and [oT sensor
networks, enabling continuous verification
through real-time telemetry. Additional work
will focus on Al explainability and bias
mitigation to ensure equitable treatment across
supplier  regions.  Cross-border  legal
harmonization will be pursued through
S
P
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collaboration with OECD and UNCITRAL
initiatives. Finally, consumer-facing
transparency tools will be developed to allow
end-users to verify device authenticity using
blockchain-anchored proofs, strengthening
market accountability.

The B-A-G-S architecture demonstrates that a
carefully  integrated = combination  of
technologies—supported by sound governance
and aligned with policy objectives—can
transform counterfeit prevention from a
reactive audit practice into a proactive,
engineered infrastructure of trust. By
embedding integrity, intelligence, geospatial
context, and automated enforcement into the
digital fabric of the global supply chain, the
framework provides not only academic
innovation but also a practical roadmap for
securing consumer-device ecosystems and
reinforcing national and industrial resilience.

6.0  References

Agrawal, T. K., Kumar, V., Pal, R., Wang, L., &
Chen, Y. (2021). Blockchain-based
framework for supply chain traceability: A
case example of textile and clothing
industry.  Computers &  Industrial
Engineering, 154, 107130.
https://doi.org/10.1016/j.cie.2021.107130

Ahmed, W. A. H., & MacCarthy, B. L. (2023).
Blockchain-enabled supply chain
traceability — How wide? How deep?
International  Journal of Production
Economics, 263, 108963.
https://doi.org/10.1016/].1jpe.2023.108963

Alharby, M., & Van Moorsel, A. (2019).
Blockchain-based smart contracts: A
systematic mapping study. Computer
Science Review, 33, 1-15.

Alla, S., Zhuang, Y., Stockill, R., & Wang, H.
(2022). Smart contracts and  their
applications in supply chain management.
Journal of  Industrial  Information
Integration, 27, 100285.

Azevedo, P., Gomes, J., & Romao, M. (2023).
Supply chain traceability using blockchain.

Operations Management Research.
https://doi.org/10.1007/s12063-023-
00359-y

Babich, V., & Hilary, G. (2020). Distributed
ledgers and operations: What operations
management researchers should know
about blockchain technology.
Manufacturing & Service Operations
Management, 22(2), 223-240.

Bhasin, M., & Sharma, A. (2020). Fraudulent
components in global supply chains:
Emerging risks and mitigation strategies.
Journal of Supply Chain Security, 12(2),
45-59.

Casino, F., Dasaklis, T. K., & Patsakis, C.
(2019). A systematic review of blockchain-
based applications for industry. [EEE
Access, 7, 17605-17633.

Chen, Y., & Lee, S. (2020). Machine-learning
approaches for detecting anomalies in
international trade networks. International
Journal of Data Science, 5(3), 112—1209.
Christidis, K., & Devetsikiotis, M. (2016).
Blockchains and smart contracts for the
Internet of Things. IEEE Access, 4, 2292—
2303.

CPSC. (2023). Annual report on consumer
product recalls. U.S. Consumer Product
Safety Commission.

FDA. (2022). Counterfeit batteries and
electronic components in medical devices.
U.S. Food and Drug Administration.

Ivanov, D., & Dolgui, A. (2021). A digital
supply chain twin for managing
disruptions.  International Journal of
Production Research, 59(13), 412-431.

Kshetri, N. (2021). Blockchain’s roles in
automating and enhancing supply-chain
security. Computer, 54(9), 73-81.

McKinsey. (2023). The economic cost of
electronics recalls. McKinsey & Company.
NIST. (2022). IoT cybersecurity labeling
framework. National Institute of Standards
and Technology.


https://doi.org/10.1016/j.cie.2021.107130
https://doi.org/10.1016/j.ijpe.2023.108963
https://doi.org/10.1007/s12063-023-00359-y
https://doi.org/10.1007/s12063-023-00359-y

Applied Science, Computing and Energy, 2025, 3(3), 493-511 510

OECD. (2021). Global trade in fake goods:
Trends and impacts. Organisation for
Economic Co-operation and Development.

Statista.  (2024).  Consumer  electronics
market—Worldwide  revenue.  Statista
Research Department.
The White House. (2021). Executive Order
14017:  America’s  supply  chains.
UL. (2023). Certification limitations and
global counterfeit risks. UL Standards &
Engagement.

U.S. CBP. (2021). Trade enforcement and
counterfeit interdiction statistics. U.S.
Customs and Border Protection.U.S. DHS.
(2020). Supply chain security and critical-
infrastructure protection. U.S. Department
of Homeland Security.

Chang, S. E., Chen, Y., & Lu, M. F. (2020).
Supply  chain  re-engineering  using
blockchain technology: A case of smart
contract-based tracking in food supply
chains. Technological Forecasting and
Social Change, 150, 119-125.

Chen, T., Li, X., Luo, X., & Zhang, X. (2023).
Smart  contract  vulnerabilities: A
comprehensive survey. ACM Computing
Surveys, 55(1), 1-37.

Doshi, S., Jangir, S., & Gohil, P. (2024). Role
of blockchain technology in enhancing
supply chain traceability, transparency and
efficiency. Journal of Experimental
Agriculture International, 46(5), 636—-653.
https://doi.org/10.9734/jeai/2024/v4615241
9

Francisco, K., & Swanson, D. (2018). The
supply chain has no clothes: Technology
adoption of blockchain for supply chain
transparency. Logistics, 2(1), 2.

Hastig, G. M., & Sodhi, M. S. (2020).
Blockchain for supply chain traceability:
Business requirements and critical success
factors.  Production and  Operations
Management, 29(4), 935-954.
https://doi.org/10.1111/poms.13147

Helo, P.,, & Hao, Y. (2021). Blockchains in
operations and supply chains: A model and
reference implementation. Computers &

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen,
L. (2019). Blockchain technology and its
relationships to sustainable supply chain
management. International Journal of
Production Research, 57, 7, pp. 2117-
2135.

Sobowale, A., Okon, R., Nzeako, G., Zouo, S.
J. C., Olamijuwon, J., Omowole, B. M., &
Olufemi-Phillips, A. Q. (2024). Ensuring
product authenticity and traceability with
blockchain in supply chains. World Journal
of Advanced Research and Reviews, 24(2),
1017-1038.
https://doi.org/10.30574/wjarr.2024.24.2.3
413

Song, J. M., & Sung, J. (2019). Applications of
blockchain to improve supply chain
traceability. Procedia Computer Science,
162, 119-122.
https://doi.org/10.1016/j.procs.2019.11.26
6

Testi, N. (2023). Blockchain technology for
supply chain traceability: The case of
SMEs of the Made in Italy. Piccola Impresa
Small Business, (2).
https://doi.org/10.14596/pisb.3501

Wong, E. K. S., Ting, H. Y., & Atanda, A. F.
(2023).  Emnhancing  supply  chain
traceability through blockchain and loT

integration: A comprehensive review.
Green Intelligent Systems and
Applications, 4(1), 11-28.

https://doi.org/10.53623/gisa.v4i1.355
Zhang, C., Xu, Y., & Zheng, Y. (2024).
Blockchain traceability adoption in low-
carbon supply chains: An evolutionary
game analysis. Sustainability, 16, 5, pp.
1817. https://doi.org/10.3390/sul6051817
Olaleye, A. G., Igbekoyi, O. E., Akinyele, A.
R., Asimolowo, A. J. (2024). Economic
Sustainability and Share Price Behavior of
Listed Financial Service Firms in Nigeria.
International Journal of Multidisciplinary
‘?'wﬁu



https://doi.org/10.9734/jeai/2024/v46i52419
https://doi.org/10.9734/jeai/2024/v46i52419
https://doi.org/10.1111/poms.13147
https://doi.org/10.30574/wjarr.2024.24.2.3413
https://doi.org/10.30574/wjarr.2024.24.2.3413
https://doi.org/10.1016/j.procs.2019.11.266
https://doi.org/10.1016/j.procs.2019.11.266
https://doi.org/10.14596/pisb.3501
https://doi.org/10.53623/gisa.v4i1.355
https://doi.org/10.3390/su16051817

Applied Science, Computing and Energy, 2025, 3(3), 493-511

Research in Academic Studies and Field
Practices (IIMRASFP), 3(3), 1-20.

Aboagye, E. F., Borketey, B., Danquah, K.,
Borketey, D. (2022). A Predictive Modeling
Approach for Optimal Prediction of the
Probability of Credit Card Default.
International  Research  Journal  of
Modernization in Engineering Technology
and Science. 4(8), 2425-2441

Declaration
Funding sources

511

No funding

Competing Financial Interests Statement:
There are no competing financial interests in
this research work.

Ethical considerations

Not applicable

Data availability

The microcontroller source code and any other
information can be obtained from the
corresponding author via email.

Authors’ Contribution

The author carried out the entire work, solely



