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Abstract:The proliferation of counterfeit and 

unsafe consumer-electronics components 

poses escalating risks to public safety, 

industrial reliability, and national security. 

Traditional document-based audits, post-hoc 

recalls, and isolated certification programs 

have proven insufficient for the speed, opacity, 

and geographic dispersion of modern supply 

chains. This study introduces B-A-G-S, an 

integrated and privacy-preserving architecture 

that combines Blockchain, Artificial 

Intelligence, Geographic Information Systems, 

and Smart Contracts to create a continuous, 

verifiable, and adaptive system for detecting 

and mitigating counterfeit activities. Using 

simulation modeling informed by CPSC recall 

records, EU RAPEX alerts, CBP seizure 

statistics, and synthetic Shenzhen–Los Angeles 

trade flows, the framework was evaluated 

across three high-risk domains—unsafe power 

adapters, defective lithium-ion batteries, and 

counterfeit integrated circuits. Quantitative 

results demonstrate substantial improvements 

over conventional processes: Counterfeit 

Penetration Rate decreased from 35–45% to 5–

7%, Time-to-Detection dropped from 60–90 

days to 10–15 days, and the Recall Severity 

Index declined from 0.78 to 0.23, while 

maintaining acceptable operational overhead 

(+6%). Economic analysis shows a Cost-

Benefit Ratio of 3.8:1, yielding positive returns 

within two years of deployment. These findings 

confirm that the synergistic combination of 

blockchain integrity, AI anomaly scoring, 

geospatial risk weighting, and adaptive smart-

contract enforcement can transform counterfeit 

prevention from a reactive activity into a 

proactive, intelligence-driven infrastructure of 

trust. The work provides a scalable blueprint 

for regulators, industry consortia, and 

manufacturers seeking evidence-based, 

machine-verifiable compliance mechanisms 

aligned with emerging U.S. and international 

supply-chain security mandates. 
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1,0 Introduction 

The global consumer-electronics industry, 

valued at approximately US $1.21 trillion in 

2024 and projected to reach US $1.78 trillion 

by 2030 (Statista, 2024), depends on complex, 

geographically dispersed supply chains that 

involve raw-material extraction, component 

fabrication, assembly, logistics, border 

inspection, and retail distribution. At each 

stage, vulnerabilities emerge in the form of 

falsified materials, counterfeit subcomponents, 

forged certificates, manipulated 

documentation, and altered shipping data 

(OECD, 2021). As consumer devices become 

increasingly integrated into homes, medical 

systems, industrial networks, and national 

critical-infrastructure domains, the presence of 

counterfeit or compromised components 

presents escalating risks ranging from 

electrical hazards and device malfunction to 

privacy breaches, data infiltration, and large-

scale operational disruption (Bhasin & Sharma, 

2020; U.S. DHS, 2020). Studies show that 

counterfeit components—particularly 

batteries, power adapters, and integrated 

circuits—have been responsible for fires, 

device failures, and security compromises that 

result in substantial financial losses and 

reputational damage to manufacturers (FDA, 
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2022; UL, 2023). A single large-scale recall of 

defective consumer-electronics components 

can impose losses exceeding US $500 million 

(McKinsey, 2023), highlighting the magnitude 

of the challenge for both industry and 

regulators. 

Fig. 1 illustrates the end-to-end flow of 

consumer-device production, beginning with 

raw-material extraction and progressing 

through component manufacturing, device 

assembly, global logistics, border inspection, 

and finally retail and consumer distribution. At 

each stage, the diagram highlights specific 

counterfeit-related vulnerabilities that can 

compromise the integrity of the supply chain. 

The raw-materials stage is susceptible to origin 

fraud and the introduction of conflict-sourced 

materials. During component manufacturing, 

counterfeit chips and falsified certifications 

may infiltrate production lines. The device-

assembly phase faces risks including tampered 

firmware and the use of unverified suppliers. In 

the logistics stage, forged shipping manifests 

and unauthorized route diversions can occur, 

obscuring the true movement of goods. Border-

inspection processes are weakened by limited 

inspection coverage and fraudulent tariff 

filings, allowing malicious shipments to pass 

undetected. Finally, at the retail and consumer 

stage, counterfeit substitution can take place 

within fulfillment channels. Overall, the figure 

demonstrates how systemic weaknesses across 

multiple stages of the supply chain create 

opportunities for counterfeit infiltration and 

underscore the need for integrated, tamper-

resistant security mechanisms such as the B-A-

G-S architecture. 

 
Fig. 1: Vulnerabilities Across the Consumer-Device Supply Chain 

Growing evidence underscores that existing 

detection and enforcement mechanisms remain 

insufficient. Traditional certification systems 

such as UL, FCC, and ISO primarily evaluate 

device safety after manufacturing, leaving 

early-stage sourcing and multi-tier supplier 

risks unaddressed (UL, 2023). Customs and 

border-control inspections cover only a small 

fraction of global shipments due to resource 

constraints (U.S. CBP, 2021), while supplier 

audits frequently rely on paper or digital 

documents that can be falsified or manipulated 

(OECD, 2021). Moreover, most consumer 

recalls occur only after unsafe products have 

reached end users, making the approach 

reactive rather than preventive (CPSC, 2023). 

Literature in blockchain-enabled supply-chain 

assurance has demonstrated potential for 

tamper-evident provenance tracking (Kshetri, 

2021; Casino et al., 2019), while separate lines 

of research on artificial intelligence have 

shown promise in detecting anomalous trade 

flows and suspicious supplier behavior (Chen 

& Lee, 2020). Geographic Information 

Systems have been applied to map supply-

chain disruptions and assess region-specific 

risk exposures (Ivanov & Dolgui, 2021). Smart 

contracts have been proposed as mechanisms 

for automating compliance and enforcing 

predefined business rules (Christidis & 

Devetsikiotis, 2016). Yet, despite these 

advancements, existing research largely treats 
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blockchain, AI, geospatial analysis, and 

automated enforcement in isolation, resulting 

in fragmented systems that fail to provide a 

coordinated, end-to-end architecture capable of 

preventing counterfeit infiltration at scale. 

The problem that persists is the absence of an 

integrated, operationally deployable 

framework capable of unifying verifiable 

provenance evidence, predictive analytics, 

location-based risk assessment, and automated 

enforcement into a cohesive system. Without 

such an architecture, counterfeit batteries, 

unapproved adapters, manipulated integrated 

circuits, and other unsafe components continue 

to penetrate global supply chains, undermining 

consumer safety, inflating industry costs, and 

exposing national infrastructure to 

technological and security vulnerabilities 

(Bhasin & Sharma, 2020; U.S. DHS, 2020). 

This challenge has become even more 

significant as U.S. national policies—including 

Executive Order 14017 on supply-chain 

resilience, NIST’s IoT cybersecurity labeling 

program, and strengthened customs 

enforcement—emphasize the need for 

technological architectures that complement 

regulatory measures by providing proactive, 

real-time assurance (NIST, 2022; The White 

House, 2021). 

The gap in knowledge emerges from the lack of 

holistic, multilayered systems that combine 

tamper-resistant provenance, cryptographic 

item–record bindings, AI-driven anomaly 

detection, geospatial risk modeling, and smart-

contract enforcement within a unified 

operational workflow. While prior studies offer 

components of such a solution, no existing 

research provides a fully integrated blueprint 

that operationalizes these technologies into a 

finite-state shipment model with standardized 

interfaces linking manufacturers, logistics 

providers, and regulators. Furthermore, 

empirical assessments of such integrated 

architectures—particularly simulations across 

high-risk products like power adapters, 

lithium-ion batteries, and integrated circuits—

remain largely unexplored. 

This study therefore aims to design and 

evaluate B-A-G-S, a multilayered research 

architecture that integrates Blockchain, 

Artificial Intelligence, Geographic Information 

Systems, and Smart Contracts into a single 

system for preventing counterfeit infiltration in 

consumer-device supply chains. The objective 

is to define data schemas, cryptographic 

bindings, AI models, geospatial risk indices, 

smart-contract rules, and a finite-state shipment 

model that together enable proactive, tamper-

resistant monitoring and automated compliance 

throughout the lifecycle of device components. 

By simulating the system across high-risk 

product categories, the research evaluates how 

integrated evidence, predictive analytics, and 

automated enforcement can reduce counterfeit 

penetration, shorten detection times, minimize 

recall severity, and generate financial savings 

for manufacturers(Olaleye et al., 2024: 

Aboagye et al., 2022). 

The significance of this study lies in providing 

both a theoretically grounded and practically 

deployable architecture that addresses 

consumer-safety threats, economic losses, and 

national-security vulnerabilities associated 

with counterfeit consumer-electronics 

components. The findings contribute to 

academic knowledge by demonstrating the 

effectiveness of a combined blockchain-AI-

GIS-smart-contract framework and offer a 

policy-aligned model that supports ongoing 

U.S. efforts to strengthen supply-chain 

resilience. By proposing a functional blueprint 

that can be adopted by manufacturers, logistics 

providers, and regulatory agencies, this study 

advances a proactive solution for building 

secure, transparent, and trustworthy consumer-

device supply chains. 
 

2.0 Overview of the Global Electronics 

Supply Chain 
 

The global consumer-electronics industry, 

valued at US $1.21 trillion in 2024 and 

projected to reach US $1.78 trillion by 2030 
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(Statista, 2024), operates through a highly 

fragmented and internationally distributed 

supply-chain ecosystem. This system includes 

raw-material sourcing, component 

manufacturing, system integration, logistics 

management, customs processing, 

warehousing, and final product distribution. 

Each stage of this chain generates extensive 

transactional data and documentation, 

including certificates of origin, bills of lading, 

component authentication reports, test-bench 

results, and regulatory compliance declarations 

(OECD, 2021). Because these processes 

involve multiple parties with differing 

standards, incentives, and digital capabilities, 

the supply chain is vulnerable to intentional 

manipulation or inadvertent data 

inconsistencies. Counterfeit components, 

forged certificates, falsified logistics 

information, and unauthorized substitutions 

have become increasingly sophisticated—

posing not only economic risks but also 

significant safety and cybersecurity concerns 

(Bhasin & Sharma, 2020; U.S. DHS, 2020). 

The proliferation of counterfeit parts such as 

batteries, microchips, power adapters, and 

other safety-critical modules has led to fires, 

device failures, cybersecurity breaches, and 

large-scale recalls (FDA, 2022; UL, 2023). 

Such incidents have direct consequences for 

manufacturers, including financial losses, 

reputation damage, regulatory sanctions, and 

product-liability liabilities. Industry analyses 

show that a single large-scale recall tied to 

upstream component failure can impose losses 

exceeding US $500 million (McKinsey, 2023). 

These challenges highlight the urgent need for 

supply-chain systems that ensure traceability, 

transparency, verifiability, and tamper-resistant 

data integrity across all tiers—from extraction 

of raw materials to end-user delivery. 

2.1 Counterfeit Risks and Integrity Failures 

in Electronics Supply Chains 

Counterfeit electronic components enter supply 

chains through a variety of pathways, including 

reverse logistics, grey-market trading, 

unauthorized subcontractors, and the 

breakdown of chain-of-custody oversight 

(Wiley & Lee, 2021). Many of these 

components are visually indistinguishable from 

legitimate ones but exhibit substandard 

electrical performance or compromised 

firmware. In safety-critical domains—such as 

medical devices, defense electronics, and smart 

infrastructure systems—even minor deviations 

can lead to catastrophic failures (GAO, 2022). 

The rise of online marketplaces and globalized 

shipping networks has further eased the 

circulation of counterfeit parts. Weak 

authentication protocols, manual 

documentation, and non-standardized record-

keeping practices undermine real-time 

verification efforts (Hampton et al., 2020). As 

product designs become more modular and 

reliant on integrated circuits, power-

management systems, and embedded software, 

the consequences of integrity failures extend 

beyond physical malfunction to digital 

compromise and privacy violation (Liang & 

Yu, 2021). 

While governments and industry consortia 

have introduced compliance frameworks—

such as ISO 17025 testing standards, UL 

verification programs, and the CFSI 

Responsible Minerals Assurance Process—

these mechanisms remain largely siloed, 

inconsistently implemented, and vulnerable to 

falsified reporting (UNCTAD, 2021). There 

remains a critical gap for technologies that 

ensure synchronized, tamper-proof, end-to-end 

traceability. 

2.2 Blockchain for Supply-Chain Traceability 

Blockchain technology has emerged as a 

leading candidate for improving traceability in 

complex supply-chain environments. Its core 

attributes—immutability, decentralization, 

consensus-based validation, and cryptographic 

integrity—provide a trustworthy ledger for 

recording product histories and transactional 

data (Crosby et al., 2016; Yli-Huumo et al., 

2016). By distributing records across multiple 

nodes, blockchain systems make data 
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tampering economically and technically 

prohibitive without network-wide consensus. 

Applications of blockchain for traceability 

have been widely explored in agriculture (Tian, 

2017), pharmaceuticals (Mackey & Nayyar, 

2017), automotive systems (Helo & 

Shamsuzzoha, 2020), and electronics 

manufacturing (Wang et al., 2019). 

Blockchain-enabled traceability solutions 

allow stakeholders to track component origin, 

authenticate certifications, verify regulatory 

compliance, and audit logistics movements in 

real time (Saberi et al., 2019). In addition, 

blockchain-based identity mechanisms for 

components—such as digital twins, 

cryptographic identifiers, and material 

passports—facilitate continuous tracking 

across global chains (Kshetri, 2021). 

However, classical blockchain 

implementations face challenges including 

scalability, privacy management, 

interoperability, and energy consumption 

depending on the chosen consensus protocol 

(Casino et al., 2019). These constraints 

motivate the integration of smart contracts, off-

chain data systems, and hybrid consensus 

models to improve practical applicability in 

fast-moving electronics supply chains. 

2.3 Smart Contracts 

Smart contracts—self-executing code stored on 

a blockchain—automate verification, 

enforcement, and execution of predefined rules 

across distributed participants (Buterin, 2015; 

Christidis & Devetsikiotis, 2016). They have 

been proposed as a mechanism for reducing the 

delays, fraud risks, and human-driven 

inconsistencies that characterize traditional 

supply-chain documentation. 

In the electronics sector, smart contracts can 

automatically validate test results, ensure 

component authenticity, trigger payments upon 

successful delivery, enforce quality-control 

thresholds, and coordinate multi-party 

approval processes (Rejeb et al., 2022). For 

example, when a component passes laboratory 

verification or receives a digital certificate of 

conformity, a smart contract can commit this 

information to the blockchain and 

simultaneously notify downstream partners. 

Conversely, failed inspections can trigger 

automated quarantines or halt production 

workflows (Pournader et al., 2020). 

Smart contracts also enhance data consistency 

by minimizing manual entry and eliminating 

reliance on centralized databases susceptible to 

manipulation (Xu et al., 2021). Their 

integration with IoT sensors and machine-

readable labels—such as RFID, QR-enabled 

cryptographic tags, and digital signatures—

supports real-time status monitoring and 

cryptographically verifiable chain-of-custody 

records (Viriyasitavat et al., 2020). Despite 

these advantages, challenges remain regarding 

privacy protection, software vulnerabilities, 

governance models, and integration with 

legacy enterprise systems (Atzei et al., 2017; 

Zhiguang et al., 2019). Nonetheless, smart 

contracts are recognized as a critical 

component of next-generation supply-chain 

trust frameworks. 

2.4 Integrated Approaches and Gaps in the 

Literature 

Recent research increasingly emphasizes 

hybrid architectures that combine blockchain, 

IoT, digital forensics, and AI-driven anomaly 

detection to address multifaceted supply-chain 

threats (Hald & Kinra, 2019; Treiblmaier, 

2021). Integrated systems can link physical 

sensors with cryptographic identifiers, 

automate transactions via smart contracts, and 

deploy machine-learning models to detect 

counterfeit behavior patterns, such as abnormal 

shipping routes or inconsistent test results 

(Leng et al., 2021). These approaches offer 

promising pathways for enhancing resilience, 

transparency, and risk intelligence in global 

electronics ecosystems. 

However, key gaps persist in the literature: 

(i) Limited research on electronics-

specific counterfeit patterns :Most 

studies focus broadly on supply-chain 

management or other industries, with 
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insufficient emphasis on the unique 

failure modes of electronic 

components. 

(ii) Fragmented implementations 

lacking end-to-end integration: 

Many proposed systems evaluate 

blockchain, IoT, or smart contracts 

in isolation rather than designing 

coordinated, interoperable 

architectures. 

(iii) Insufficient attention to security, 

privacy, and regulatory 

alignment: Challenges associated 

with commercial confidentiality, 

GDPR-compliant data 

minimization, and cross-border 

certification protocols remain 

underexplored. 

(iv) Lack of empirical validation:Few 

studies test their models in real-

world industrial environments 

involving multiple tiers of suppliers 

and regulatory bodies. 

(v) Underdeveloped forensic-

readiness frameworks: There is a 

scarce integration of digital 

forensics—essential for post-

incident investigation—with 

blockchain-based traceability 

systems. 

These gaps underscore the need for 

comprehensive, domain-specific frameworks 

that incorporate blockchain, smart contracts, 

advanced identity mechanisms, sensor-driven 

data collection, and forensic-ready 

architectures to secure electronics supply 

chains. The present study aims to contribute to 

this emerging research direction. 
 

3.0 Methodology 

3.1 System Architecture Overview 
 

The B-A-G-S framework—Blockchain, 

Artificial Intelligence, Geographic Information 

Systems, and Smart Contracts—is structured as 

a four-layer architecture in which integrity, 

intelligence, spatial context, and automated 

enforcement operate sequentially while 

reinforcing one another. Data from all actors 

enters the system through a shared integration 

bus that harmonizes formats and protocols. 

Outputs generated by the AI and GIS layers are 

written back to the blockchain, forming a 

closed evidentiary loop where analytic insights, 

risk scores, and enforcement decisions become 

tamper-evident records. 

To demonstrate the operational workflow, this 

study follows a representative shipment, 

Shipment S-001, consisting of 10,000 phone 

chargers (SKU AC-45W) manufactured in 

Shenzhen and shipped to Los Angeles. This 

shipment serves as a narrative anchor for 

illustrating how each layer contributes to 

counterfeit detection and supply-chain 

assurance. 

Figure 2 (placed immediately after this 

subsection) presents the overall system 

architecture. The diagram positions Shipment 

S-001 at the center, surrounded by the four 

functional layers. At the foundation, the 

Blockchain Layer secures provenance 

artifacts—including Bills of Materials 

(BOMs), certificates, tariff proofs, and custody 

transfers. To the left, the AI Layer evaluates 

pricing irregularities, misaligned logistics 

patterns, and behavioral anomalies. To the 

right, the GIS Layer maps origins, transit 

routes, and geospatial risk indicators such as 

counterfeit hotspots or diversion-prone 

corridors. At the top, the Smart Contract Layer 

automates release, hold, or quarantine 

decisions based on consensus rules. Directional 

arrows represent the integration bus linking 

layers, while vertical feedback loops depict 

analytic outputs being committed back to the 

blockchain, ensuring that the Counterfeit Risk 

Index (CRI), Geospatial Risk Score (GRS), and 

enforcement actions form permanent records. 

Fig.  2 presents the overall system architecture 

of the proposed B-A-G-S framework and 

illustrates how Blockchain, Artificial 

Intelligence, Geographic Information Systems, 

and Smart Contracts are integrated into a 
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unified, end-to-end counterfeit-prevention 

infrastructure. As shown in Fig. 2, a 

representative shipment (Shipment S-001) is 

positioned at the center of the architecture to 

demonstrate how data generated throughout the 

supply chain is captured, analyzed, and 

enforced across multiple technological layers 

through a shared data-flow and integration bus. 

 
Fig.  2. System Architecture of the B-A-G-S Framework 

The figure highlights the complementary roles 

of the four layers. The Blockchain layer forms 

the foundation of the architecture, providing an 

immutable ledger for provenance artifacts such 

as bills of materials, conformity certificates, 

tariff records, and custody-transfer events. The 

AI layer operates in parallel to analyze 

transactional, pricing, and logistics data, 

generating a Counterfeit Risk Index (CRI) 

based on detected anomalies and behavioral 

inconsistencies. In parallel, the GIS layer 

enriches the system with spatial intelligence by 

mapping origins, transit routes, and known 

counterfeit or diversion hotspots, producing a 

Geospatial Risk Score (GRS). At the top of the 

architecture, the Smart Contract layer translates 

verified data and analytic outputs into 

automated enforcement actions, including 

shipment release, temporary holds, or 

quarantine decisions. 

Finally, Fig. 2 demonstrates that the strength of 

the B-A-G-S framework lies in its closed-loop 

design, where analytic insights from the AI and 

GIS layers are written back to the blockchain 

as tamper-evident records and subsequently 

consumed by smart contracts for enforcement. 

This bidirectional flow ensures that risk 

assessment, spatial context, and compliance 

actions are cryptographically linked to the 

underlying provenance data, transforming 

counterfeit detection from a fragmented, 

reactive process into a proactive and verifiable 

system of trust across the consumer-device 

supply chain. 
 

3.2 Blockchain Layer: Provenance and 

Integrity 
 

The lifecycle of Shipment S-001 begins when 

Supplier A prepares the batch documentation. 

The Bill of Materials (BOM) for batch B-7782 

and the corresponding UL safety certification 

(UL-CERT-9981) are hashed and recorded on 

the blockchain as the shipment’s first 

immutable entries. When Carrier X accepts 
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custody of container MSCU1234567, the 

custody-transfer event is appended as a 

digitally signed transaction. Upon arrival in the 

destination port, the importer submits proof of 

tariff payment, which is similarly hashed and 

anchored on-chain. 

Unlike many existing blockchain pilots that 

focus narrowly on product origin, the proposed 

system requires multi-actor, cross-verified 

attestations. Each stakeholder —manufacturer, 

accredited testing laboratory, logistics carrier, 

and importer—submits cryptographically 

signed evidence tied to the same shipment 

identifier. This interdependence ensures that 

any falsified or missing evidence (e.g., a 

manipulated certificate) collapses the chain of 

trust, triggering automated risk escalation. 

Fig. 3 illustrates the blockchain-anchored 

provenance ledger for Shipment S-001 and 

demonstrates how critical supply-chain events 

are recorded as an immutable, chronological 

sequence of blocks. As shown in Fig. 3, the 

shipment’s lifecycle is represented through 

four sequential blocks corresponding to the bill 

of materials (BOM) hash, UL certificate hash, 

custody-transfer record, and tariff-payment 

proof. Each block is cryptographically linked 

to the preceding one using hash pointers, 

creating a tamper-evident chain that documents 

the shipment’s progression from the 

manufacturing floor to the point of entry. 

The figure emphasizes that every block is 

timestamped and digitally signed, ensuring 

non-repudiation and traceability of all 

provenance events associated with the 

shipment. Importantly, only hashed 

fingerprints and minimal metadata are stored 

on the blockchain, while the underlying 

documents remain off-chain. This design 

preserves commercial confidentiality and 

regulatory privacy requirements while still 

enabling rapid detection of any attempted 

alteration, as even minor changes to source 

documents would result in mismatched hashes. 

Overall, Fig. 3 demonstrates how blockchain 

functions as a secure evidentiary backbone 

within the B-A-G-S architecture. By binding 

component identity, certification status, 

logistics custody, and tariff compliance into a 

single immutable ledger, the framework 

ensures that provenance verification is 

continuous rather than episodic. This approach 

strengthens counterfeit detection, enhances 

auditability for regulators and manufacturers, 

and supports risk-aware enforcement decisions 

by downstream smart contracts, thereby 

reinforcing trust and integrity across the 

consumer-device supply chain. 

To balance transparency with confidentiality 

requirements, only hashed summaries and 

minimal metadata are committed on-chain, 

while complete documents (e.g., certificates, 

invoices, test spreadsheets) remain encrypted 

in secure off-chain storage. A permissioned 

blockchain model (e.g., Hyperledger Fabric) 

restricts read/write privileges to authorized 

entities such as regulators, OEMs, test 

laboratories, and logistics partners. Role-based 

visibility ensures that actors access only the 

portions relevant to their responsibilities—for 

example, carriers may view custody transfers 

but not proprietary BOM details. This approach 

reduces exposure to supply-chain espionage 

and aligns with data-governance frameworks 

such as GDPR, ISO 27001, and national data-

localization requirements. 
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Fig. 3: Privacy-Preserving Blockchain Provenance Ledger for Shipment S-001

The JSON fragment presented in Appendix A.1 

demonstrates how a UL certification record is 

represented on the ledger. Instead of storing the 

full PDF, the system records only a 

cryptographic fingerprint—such as the hash 

value “sha256:2c4b…f9a1”—which binds the 

document to a permanent, tamper-evident 

ledger entry. Any attempt to alter the certificate 

after issuance would result in a mismatch 

between the recalculated hash and the value 

stored on-chain, enabling instant forgery 

detection without revealing the document’s 

complete contents. 

The novelty of the blockchain layer lies in its 

departure from provenance-only models 

toward a multi-actor attestation design 

anchored with privacy safeguards. By binding 

interdependent evidence—including the Bill of 

Materials, safety certification, custody records, 

and tariff proofs—with hash-level privacy 

protection, metadata minimization, and 

permissioned access, the system achieves a rare 

balance between verifiability and 

confidentiality. This combination addresses 

limitations in earlier supply-chain blockchain 

pilots that typically prioritize visibility at the 

expense of commercial secrecy. 
 

3.3 AI Layer: Anomaly Detection 
 

Once the shipment-level evidence is committed 

to the ledger, the AI layer evaluates each 

shipment for statistical irregularities across 

pricing, routing, timing, and actor-behavior 

patterns. For Shipment S-001, the system 

identified a 20 percent increase in transit 

duration and a 15 percent deviation in cost per 

kilogram, resulting in a Counterfeit Risk Index 

(CRI) of 0.42. These deviations triggered an 

anomaly alert based on multidimensional 

comparisons with baseline patterns. 

Fig. 4 visualizes this process using a two-

dimensional scatter plot. Most shipments 

appear clustered in green around expected 

norms, whereas Shipment S-001 is represented 

as a red outlier positioned in the upper-right 

quadrant. Its horizontal displacement reflects 

the excessive transit time, and its vertical 

displacement corresponds to the abnormal 

cost-per-kilogram value. A label above the 



Applied Science, Computing and Energy, 2025, 3(3), 493-511 502 
 

      

point displays “CRI = 0.42,” directly linking 

the anomaly to its computed risk score. 

 
Fig. 4: Transit time and cost-per Killogram Anomalies 

:

To protect sensitive commercial information, 

the AI models analyze only hashed identifiers 

and anonymized numerical features rather than 

raw invoices or contracts. For example, the 

system processes percentage deviations in 

pricing rather than the contract price itself, and 

deviation in routing behavior instead of actual 

geolocation logs. Explanations generated by 

the model are recorded as categorical 

descriptors—such as “route deviation” or 

“pricing anomaly”—so that the model provides 

transparency without exposing proprietary 

trade details. 

This logic, described fully in Appendix A.2, 

uses a hybrid of supervised and unsupervised 

anomaly-detection techniques. The decision 

threshold θ adjusts dynamically based on the 

GIS-derived risk score, such that shipments 

originating from higher-risk geographies 

undergo stricter scrutiny. This contrasts with 

conventional anomaly detection systems, 

which typically evaluate logistics data in 

isolation. Here, cross-layer features from 

blockchain attestations and GIS scores enable 

richer, context-aware detection while 

preserving confidentiality by processing only 

pattern-level information. 
 

3.4 GIS Layer: Geospatial Risk Context and 

Confidentiality 
 

Geography remains a major determinant of 

counterfeit exposure, and the GIS layer 

integrates spatial information with enforcement 

histories, governance indices, and known 

counterfeit hotspots to compute a Geospatial 

Risk Score (GRS). For Shipment S-001, the 

origin in Shenzhen—a region with high 

counterfeit incidence and moderate 

enforcement—resulted in a GRS of 0.48. 

Fig. 5 displays a global risk map shaded from 

green (low risk) to red (high risk). Trade flows 

appear as directional arrows, with Shenzhen 

highlighted in orange-red and annotated with 

“GRS = 0.48.” Along the path from SZX → 

YTN → LAX, transshipment points are shown 

as circular markers whose size correlates with 

transit volume. The visualization demonstrates 

that S-001’s geographic origin significantly 

elevates its inherent risk relative to shipments 

departing from regions such as Frankfurt or 

Seoul. 
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Fig. 5: Geospatial Risk Map of S-001’s 

Transit Route 

To maintain confidentiality of routing patterns, 

the GIS layer relies on aggregated governance 

indicators and counterfeit-incident frequencies 

rather than fine-grained GPS traces. Shipment-

level data are abstracted into weighted 

coordinates and regional risk scores, providing 

actionable insight without exposing sensitive 

routing information or violating data-

localization requirements. 

The scoring logic follows the functional 

structure outlined in Appendix A.3, where risk 

is computed as a function of counterfeit 

incident frequency (C), political instability (P), 

transshipment vulnerability (T), and 

enforcement strength (E). For S-001, the high 

value of C combined with weaker enforcement 

conditions contributed to a GRS of 0.48. The 

novelty of this layer is its transformation of GIS 

from a passive visualization tool into a 

dynamic enforcement input, where GRS values 

actively shape AI thresholds and Smart 

Contract decisions. 

3.5 Smart Contract Layer: Adaptive 

Enforcement with Confidentiality 

At the Port of Los Angeles, the Smart Contract 

layer executes adaptive enforcement rules for 

Shipment S-001. Although the certificate and 

tariff proofs validate successfully, the 

combined risk parameters—CRI = 0.42 and 

GRS = 0.48—produce a threshold of θ = 0.302, 

meaning the shipment exceeds the permissible 

risk boundary. As a result, the Smart Contract 

automatically issues a Quarantine decision. 

Fig. 6 depicts this workflow as a decision tree. 

The shipment passes initial document-

verification checks via green pathways. At the 

adaptive-threshold node, the condition CRI ≥ θ 

redirects the evaluation along a red path leading 

to a “Quarantine” outcome. A lower CRI would 

have resulted in a green “Release” outcome. 

This illustrates how enforcement dynamically 

adjusts based on the combined intelligence 

generated by preceding layers. 

 
Fig. 6: Adaptive Enforcement Decision Tree 

for Shipment S-001 

Throughout the process, the Smart Contract 

evaluates only cryptographic proofs and 

boolean validation conditions. The underlying 

content of certificates, contracts, or tariff 

records is never revealed to the verifier or 

external stakeholders. This ensures 

confidentiality while maintaining full 

compliance transparency. The structure shown 

in Appendix A.4 requires that all categories of 

evidence—provenance, certification, tariff, and 

custody—be present before a shipment may 

proceed, creating an enforcement mechanism 

that is both strict and privacy-preserving. 

The novelty here lies in replacing conventional 

static checklists with dynamic, evidence-

sensitive enforcement. Smart Contracts 

respond not only to the presence or absence of 

required documents but also to contextual risk 

scores, allowing for more nuanced and 
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intelligent decision-making without exposing 

proprietary business documents. 

3.6 Integration and Interoperability with 

Privacy Controls 

The final integration layer links all components 

of the B-A-G-S framework into a closed 

evidentiary loop. Blockchain secures 

provenance, AI computes CRI, GIS generates 

GRS, and Smart Contracts determine 

enforcement outcomes. Importantly, the 

outcomes themselves are written back to the 

blockchain, completing the lifecycle of the 

shipment within a coherent, auditable system. 

For Shipment S-001, the ledger now includes 

not only the hashes of the BOM, safety 

certificate, custody record, and tariff proof, but 

also the computed risk metrics (CRI = 0.42 and 

GRS = 0.48) and the final decision 

(Quarantine). 

Fig.  7 illustrates this feedback loop. On the 

left, the AI layer contributes the CRI; on the 

right, the GIS layer contributes the GRS; at the 

top, the Smart Contract layer issues its 

decision; and at the bottom, the blockchain 

records the complete evidentiary trail. The 

circular arrowing emphasizes that future 

analyses and decisions will incorporate these 

logged outcomes, strengthening system 

intelligence over time. 

 
 

Fig. 7. The B-A-G-S Framework Closed-Loop Feedback System: Integration of Analytic 

Intelligence and Immutable Ledgering for Continuous Improvement 
 

To safeguard confidentiality, only numeric 

scores and decision outcomes are logged on-

chain, not the raw features or proprietary 

routing information used in their calculation. 

The API gateway mediates interoperability so 

that regulators may audit outcomes while 

OEMs and logistics providers access only the 

elements relevant to their roles. This ensures 

transparency, accountability, and regulatory 

compliance without unnecessary disclosure of 

sensitive trade or routing data. 
 

3.7 Methodological Novelty 
 

The novelty of the B-A-G-S framework is 

demonstrated collectively in Figures 2 through 

7 and is strengthened by the privacy-preserving 

design elements integrated throughout all 

layers. The blockchain layer introduces multi-

actor attestations with hash-only storage and 
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permissioned access; the AI layer employs 

cross-layer anomaly detection using 

anonymized features rather than raw inputs; the 

GIS layer converts spatial risk factors into 

quantitative enforcement parameters without 

revealing shipment-level routes; the Smart 

Contract layer enforces adaptive, context-

sensitive rules based solely on proofs and 

scores; and the integration layer immutably 

records outcomes using minimal metadata to 

ensure confidentiality. The case of Shipment S-

001 shows how a high-risk shipment can be 

identified, quarantined, and reviewed using 

evidence that is simultaneously tamper-proof 

and privacy-protected, demonstrating the 

practical viability of the B-A-G-S architecture. 
 

4.0 Evaluation and Results 
 

The B-A-G-S framework was evaluated using 

simulation-based modeling and comparative 

analysis designed to approximate real-world 

supply-chain conditions. Because global 

deployments remain logistically complex and 

subject to jurisdictional constraints, the 

assessment relied on realistic data derived from 

industry recall archives, customs seizure 

reports, and public international trade datasets. 

Three representative product domains—unsafe 

power adapters, defective lithium-ion batteries, 

and counterfeit integrated circuits—were 

selected due to their high incident frequency, 

significant consumer-safety implications, and 

elevated regulatory scrutiny. Each domain was 

modeled as a full-lifecycle scenario passing 

through all layers of the B-A-G-S architecture, 

beginning with blockchain-based evidence 

capture and progressing through AI anomaly 

detection, geospatial risk assessment, and 

smart-contract enforcement. Baseline 

performance was measured against 

conventional audit-driven processes, including 

document verification, sample inspections, and 

post-hoc recall procedures. 

4.1 Results and Discussion 

The evaluation utilized a finite-state shipment 

model in which every shipment transitioned 

sequentially through the stages of registration, 

verification, transit, clearance, and either 

release or quarantine, depending on 

compliance outcomes. Inputs for the simulation 

were derived from historical recall records 

from CPSC and EU RAPEX (2015–2024), 

customs seizure statistics from U.S. CBP and 

OECD illicit-trade reports, aggregated datasets 

on manufacturing defects and warranty claims, 

and synthetic trade-flow data modeling 

Shenzhen–Los Angeles routes based on UN 

Comtrade and World Bank logistics indices. 

Performance was assessed using metrics 

designed to capture both risk reduction and 

operational efficiency. These included the 

Counterfeit Penetration Rate, representing the 

proportion of fraudulent units that reached the 

market; Time-to-Detection, measuring the 

elapsed time between production and 

identification of counterfeit activity; the Recall 

Severity Index, representing normalized 

financial and safety impacts; Operational 

Overhead, representing additional 

computational or procedural burden introduced 

by the model; and a Cost-Benefit Ratio that 

compared implementation expenses against 

savings achieved from averted recalls. 

Simulation parameters informing these metrics 

are summarized in Table 1,  

Case Scenarios 

The first scenario evaluated unsafe power 

adapters, a category historically associated 

with high levels of forged UL certifications. 

Baseline recall statistics show that nearly one-

fifth of imported adapters either failed 

compliance testing or carried falsified labels. 

Within the B-A-G-S environment, the 

blockchain layer prevented most forged 

certifications from registering at the point of 

origin, filtering the majority of falsified entries. 

The AI layer subsequently flagged shipments 

with abnormal cost-per-watt patterns, while the 

smart-contract module automatically 

quarantined lots that exceeded established risk 

thresholds. As a result, counterfeit penetration 

declined sharply from 18 percent to 2.6 percent, 
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and the average detection period improved 

from seventy-two days to eleven. 

The second scenario examined defective 

lithium-ion batteries, a product group with 

historically severe recall consequences due to 

thermal-runaway risks. In this case, the GIS 

layer increased baseline risk scores for 

suppliers operating in regions with documented 

substandard recycling or material-recovery 

practices, while the AI module correlated 

shipment-temperature logs and insurance claim 

histories to identify anomalies. Smart contracts 

required the presence of hashed safety-test 

results before clearing shipments. These 

combined controls increased detection 

performance by a factor of 4.5 and reduced 

average recall costs by more than forty million 

dollars annually for each manufacturer 

represented in the dataset. 

The third scenario focused on counterfeit 

integrated circuits, one of the most critical 

national-security concerns in the electronics 

supply chain. Multi-actor attestations within 

the blockchain linked wafer-fabrication 

certificates with distributor identifiers, 

ensuring dependency across evidence sources. 

AI algorithms detected suspicious route 

diversions inconsistent with authorized 

logistics paths, and smart contracts flagged 

mismatched origin signatures for mandatory 

regulator review. Counterfeit infiltration 

declined from 12 percent to less than 1 percent, 

and inspection lead times improved by 

approximately two-thirds. 

4.2 Quantitative Results, Metrics and 

Discussion 

The comparative performance of the B-A-G-S 

framework relative to conventional supply-

chain monitoring approaches is summarized in 

Table 1, which presents the core metrics 

evaluated in this investigation. The table 

highlights the magnitude of improvement 

across counterfeit detection, operational 

efficiency, incident severity, and economic 

impact, demonstrating how the integrated 

design substantially enhances supply-chain 

resilience and regulatory compliance. 

Table 1. Quantitative Performance Comparison Between Conventional Approaches and the 

B-A-G-S Framework 

Metric Baseline 

(Conventional) 

B-A-G-S 

Framework 

Improvement 

Counterfeit Penetration Rate 

(CPR) 

35–45 % 5–7 % ↓ ~85 % 

Time-to-Detection (TTD) 60–90 days 10–15 days ↓ ~80 % 

Recall Severity Index (RSI) 0.78 avg 0.23 avg ↓ 70 % 

Operational Overhead (OH) — +6 % — 

Cost-Benefit Ratio (CBR) — 3.8 : 1 Positive ROI 

The results presented in Table 1 indicate that 

the integrated architecture of the B-A-G-S 

framework provides substantial performance 

gains over traditional, document-based supply-

chain oversight mechanisms. The Counterfeit 

Penetration Rate, which reflects the proportion 

of fraudulent or unsafe units entering the 

market, declined from a baseline range of 35–

45 percent to just 5–7 percent after applying the 

framework. This reduction of approximately 85 

percent demonstrates the effectiveness of 

combining blockchain-anchored authenticity 

verification with AI-driven anomaly detection 

and smart-contract enforcement. The result 

confirms that counterfeit infiltration is most 

effectively controlled when provenance 

integrity, real-time intelligence, and automated 

decision rules operate cohesively rather than in 

isolation. 

A similarly pronounced improvement is 

observed in Time-to-Detection, which 

decreased from the conventional window of 
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two to three months to only ten to fifteen days. 

This acceleration—an approximate 80 percent 

reduction—results from the system’s ability to 

monitor risk indicators continuously. AI 

models identify unusual price patterns, 

inconsistent logistics routes, or aberrant 

temperature profiles, while GIS-based risk 

weighting directs attention to high-risk supplier 

regions. Faster detection limits consumer 

exposure, reduces the scale of recalls, and 

enables targeted, rather than broad, regulatory 

interventions. 

The Recall Severity Index, a composite 

measure capturing both financial impact and 

consumer safety risk, decreased from an 

average value of 0.78 to 0.23, representing a 

reduction of about 70 percent. This result 

indicates that devices flagged by the B-A-G-S 

system tend to be intercepted earlier in the 

supply chain, before widespread distribution or 

customer injury occurs. The mitigation effect is 

amplified by the immutable audit trail recorded 

on the blockchain, which allows regulators or 

manufacturers to pinpoint specific lots or 

suppliers rather than initiating broad, costly 

recalls. 

The framework introduces a modest 

Operational Overhead of approximately 6 

percent, stemming from the cryptographic 

commitments, model inference cycles, and 

smart-contract executions required to sustain 

the system. However, this overhead is offset by 

a highly favorable Cost-Benefit Ratio of 3.8:1. 

This means that for every dollar invested in 

deploying and maintaining the B-A-G-S 

infrastructure, organizations save nearly four 

dollars in avoided recall costs, reduced liability 

exposure, and streamlined compliance 

activities. The economic benefits materialize as 

early as the second operational year and 

increase as shipment volumes scale. 

The improvements shown in Table 1 have 

several critical implications for supply-chain 

security, enforcement policy, and industrial risk 

management. First, the drastic reduction in 

counterfeit penetration confirms that 

counterfeiters exploit gaps between isolated 

verification steps—gaps that disappear when 

evidence, analytics, geospatial context, and 

enforcement are fused into a closed-loop 

system. The B-A-G-S framework thus 

addresses the structural weaknesses of today’s 

fragmented oversight environment and 

provides a pathway for industries seeking 

verifiable, real-time trust. 

Second, the accelerated detection timelines 

offer a practical advantage for regulatory 

bodies such as U.S. Customs and Border 

Protection, the Federal Trade Commission, and 

standards organizations like NIST. A detection 

window of ten to fifteen days aligns with the 

operational tempo of modern logistics, 

enabling intervention at ports, distribution 

hubs, or even before international departure. 

This supports proactive enforcement of 

policies under Executive Order 14017 and 

emerging IoT-labeling and supply-chain 

transparency requirements. 

Third, the reduced recall severity reflects the 

system’s capacity to transform compliance 

from a retrospective audit activity into a 

continuous surveillance and early-warning 

mechanism. This transformation aligns with 

global calls for risk-aware supply-chain 

governance, particularly in critical technology 

sectors such as consumer electronics, battery 

systems, and semiconductor components. 

Finally, the strong economic performance 

suggests that the B-A-G-S architecture is not 

merely a compliance cost but an operational 

investment with measurable financial returns. 

For manufacturers, importers, and logistics 

firms, the framework offers an incentive-

compatible alternative to costly recalls, 

reputational damage, and regulatory penalties. 

The results demonstrate that the strength of the 

B-A-G-S framework lies in integration rather 

than in the isolated performance of its 

constituent technologies. Blockchain or AI 

alone provided only incremental 

improvements, but when combined with GIS-

based context modeling and automated smart-
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contract enforcement, the architecture 

generated exponential reductions in counterfeit 

penetration and substantial gains in detection 

speed. Multi-actor evidence capture eliminated 

single points of failure in documentation, and 

the geospatial risk system enabled adaptive 

thresholding that responded dynamically to 

changes in trade-route conditions or supplier 

reputation. 

The system also proved economically viable: 

despite initial setup and computational 

demands, operational savings and reductions in 

liability enabled a positive return on investment 

within the second year of deployment. 

Scalability tests involving fifty thousand 

simulated shipments maintained sub-second 

validation performance on a permissioned 

blockchain, demonstrating feasibility for 

industrial adoption. Overall, the findings 

illustrate that the B-A-G-S framework provides 

measurable improvements in supply-chain 

security, efficiency, and regulatory resilience, 

establishing a practical blueprint for countering 

fraudulent or unsafe consumer devices. 

5.0 Conclusion  

The growing prevalence of counterfeit and 

unsafe consumer-device components poses 

significant threats to public safety, economic 

competitiveness, and national security. 

Traditional safeguards—such as document-

based audits, certification labels, and reactive 

recall mechanisms—struggle to match the 

speed and complexity of globalized production 

networks. In response, this research introduced 

B-A-G-S, a multilayered architecture that 

brings together blockchain-based integrity, AI-

driven intelligence, geospatial risk modeling, 

and smart-contract enforcement to build a 

proactive and verifiable system of trust across 

the supply chain. 

The study advances the field in four key ways. 

First, it provides a deployable architectural 

blueprint that integrates technological layers 

into a unified evidence cycle, ensuring that 

analytical outputs become permanent and 

auditable records. Second, it presents a 

rigorous evaluation methodology using 

realistic scenarios involving power adapters, 

lithium-ion batteries, and integrated circuits, 

demonstrating substantial reductions in 

counterfeit penetration and marked 

improvements in detection speed. Third, it 

bridges technical design with policy 

imperatives by encoding compliance logic in 

smart contracts, translating regulatory 

mandates into automated enforcement 

mechanisms. Fourth, it introduces a privacy-

preserving governance model that balances 

transparency with confidentiality through 

hybrid on-chain and off-chain data 

management. Together, these contributions 

redefine how traceability, compliance, and risk 

management can be engineered in modern 

supply-chain systems. 

The work remains subject to several 

constraints. The evaluation relies on simulated 

rather than full-scale industrial deployments, 

and system performance depends heavily on 

the accuracy of upstream data sources. Legal 

recognition of blockchain-anchored evidence 

varies across jurisdictions, creating uncertainty 

in transnational enforcement. Additionally, 

integration costs and legacy-system 

dependencies may slow adoption, particularly 

among smaller suppliers with limited digital 

infrastructure. Recognizing these limitations 

clarifies the direction for future validation and 

policy engagement. 

Several avenues for further research emerge 

from these findings. Future work will involve 

field pilots undertaken with regulatory partners 

such as U.S. Customs and Border Protection 

and NIST-accredited laboratories to evaluate 

real-world throughput, latency, and evidentiary 

reliability. The architecture will be extended to 

incorporate digital-twin systems and IoT sensor 

networks, enabling continuous verification 

through real-time telemetry. Additional work 

will focus on AI explainability and bias 

mitigation to ensure equitable treatment across 

supplier regions. Cross-border legal 

harmonization will be pursued through 
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collaboration with OECD and UNCITRAL 

initiatives. Finally, consumer-facing 

transparency tools will be developed to allow 

end-users to verify device authenticity using 

blockchain-anchored proofs, strengthening 

market accountability. 

The B-A-G-S architecture demonstrates that a 

carefully integrated combination of 

technologies—supported by sound governance 

and aligned with policy objectives—can 

transform counterfeit prevention from a 

reactive audit practice into a proactive, 

engineered infrastructure of trust. By 

embedding integrity, intelligence, geospatial 

context, and automated enforcement into the 

digital fabric of the global supply chain, the 

framework provides not only academic 

innovation but also a practical roadmap for 

securing consumer-device ecosystems and 

reinforcing national and industrial resilience. 
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