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Abstract: This paper presents a 

comprehensive approach to the strategic 

governance and resilience of cyber risk in the 

US critical infrastructure sectors. With 

threats such as the 2021 Colonial Pipeline 

ransomware attack, which disrupted fuel 

supply and caused economic and social 

chaos, strong governance is vital. The 

current study employs resilience theory, risk 

management, and governance models to 

develop a solution for protecting critical 

infrastructure amid evolving threats. The 

framework includes four pillars: adaptive 

governance, real-time threat intelligence, 

cross-sector collaboration, and resilience 

building. By examining existing frameworks, 

regulations, and sector weaknesses, key gaps 

are identified, leading to potential 

improvements suggested. Results show that 

effective cyber risk governance should move 

beyond compliance to dynamic, intelligence-

led models that emphasize rapid adaptation, 

stakeholder coordination, and capability 

development. This framework provides 

practical guidance for policymakers, 

operators, and cybersecurity experts to 

strengthen national resilience against cyber 

threats. These implications are intended to 

inform future policy-making, enhance 

relations between the populace and the 

private sector, and improve the security 

landscape of critical infrastructure sectors 

essential to national security and economic 

stability. 
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1.0  Introduction 

The digitalization of critical infrastructure 

has radically shifted the risk environment in 

modern societies. What used to be a remote 

operational technology infrastructure has 

become a very interconnected network, in 

which a failure in one sector can trigger a 

domino effect in many areas (Moteff and 

Parfomak, 2015). On May 7, 2021, the 

Colonial Pipeline, which transports 45% of 

the fuel used on the East Coast, was targeted 

by the Darkside ransomware group, 

triggering fuel shortages and an emergency 

declaration in 17 states (Turton and 

Mehrotra, 2021). This event highlighted a 

disturbing reality: even after spending 

billions on cybersecurity, the governance 

systems that safeguard America's most 

critical systems remain disjointed, reactive, 

and poorly aligned. 

Beyond the immediate operational and 

economic consequences of cyber incidents, 

the governance of cyber risk in critical 

infrastructure is increasingly understood 

through the lens of resilience theory and 

complex adaptive systems. Critical 

infrastructure sectors function as socio-

technical systems in which technological 

assets, human operators, institutional rules, 

and market forces interact dynamically. 

Resilience in this context extends beyond 

prevention to encompass the ability to 

anticipate, absorb, recover from, and adapt to 

cyber disruptions. Scholars argue that 

governance structures must therefore be 

adaptive, learning-oriented, and capable of 

responding to uncertainty rather than relying 

solely on static control mechanisms or 

perimeter-based defenses (Linkov et al., 

2019; Woods, 2015). 

Cyberattacks on critical infrastructure rose 

87% from 2019 to 2024, with threat actors 
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increasingly breaching critical services 

(CISA, 2024). In 2021, the largest meat 

processor, JBS Foods, was breached, while 

attackers also easily targeted the Oldsmar 

water treatment to alter water chemicals 

(Perlroth, 2021). In 2023, healthcare systems 

faced over 1,400 breaches, disrupting 

medical services and record security (HHS, 

2024). 

These attacks reveal systemic flaws in both 

technical defenses and governance 

frameworks for predicting, stopping, and 

mitigating cyber threats. Current strategies 

are mostly compliance-based, with minimal 

efforts to build resilience. The rise of 

industry-specific systems creates isolated 

protections that overlook the 

interdependence of modern infrastructure 

(Hathaway and Klimburg, 2023). 

Asymmetries between defenders and 

attackers exacerbate the issue: operators 

must patch all vulnerabilities, while 

adversaries need only find one. Nation-states 

have gained access to critical networks, 

enabling persistent spying and attack 

preparation (NSA, 2023). 

Current governance systems struggle with 

dynamic threats and inadequate policy 

strategies. The NIST Cybersecurity 

Framework offers guidance and strengthen 

policy solutions but is limited by voluntary 

implementation and broad applicability, 

hindering behavioral change (NIST, 2024; 

Siame, 2025). CISA has limited authority to 

enforce security outside federal systems 

(CISA, 2021). Regulatory hurdles exist as 

85% of critical infrastructure is privately 

owned (DHS, 2022). Despite laws, 

information sharing remains difficult due to 

companies' reluctance to share vulnerability 

or breach information (Chowdhury and 

Gkioulos, 2019). 

The only noticeable omission is an integrated 

strategic approach that moves beyond 

piecemeal methods. This paper addresses 

that gap by proposing a holistic strategic 

framework aimed at improving cyber risk 

governance and resilience within key 

infrastructure sectors in the US. The study 

has three interconnected goals: first, it 

reviews current theoretical insights and 

empirical data to establish a solid foundation 

for understanding cyber risk governance 

issues; second, it develops a comprehensive 

system built on four essential pillars to bridge 

gaps in existing approaches; third, it offers 

practical insights into implementation 

mechanisms and industry-specific 

adjustments that help turn abstract principles 

into actionable guidance for policymakers, 

regulators, and infrastructure operators. 
 

 

1.1 Theoretical Framework 
 

To understand cyber risk governance of 

critical infrastructure, one must engage with 

various theoretical traditions. Our framework 

rests on three main pillars: resilience theory, 

risk governance theory, and organizational 

learning theory.  

The term 'resilience' has become the 

dominant framework for protecting critical 

infrastructure, though it has multiple 

meanings (Linkov and Palma-Oliveira, 

2014). Engineering resilience focuses on 

quickly restoring systems to their pre-

disturbance state, while ecological resilience 

emphasizes adaptive capacity, the ability to 

reorganize systems and maintain vital 

functions amid changing conditions 

(Holling, 1973). This distinction is especially 

significant in cybersecurity. The resilience 

cycle comprises four key stages: 

anticipation, which involves threat scanning 

and identifying vulnerabilities; absorption, 

which means enduring disruptions through 

redundancy and robust design; adaptation, 

which entails modifying operations during 

and after an incident; and recovery, which 

involves restoring functionality and learning 

from the experience (Linkov et al., 2013).  

Risk governance theory complements 

resilience thinking by focusing on the 

institutional structures through which 

societies recognize, assess, and respond to 

risks (Renn and Walker, 2011). Unlike 

traditional risk management, which assumes 

a designated decision-maker, risk 

governance recognizes that modern risks 
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often cross borders—affecting countries, 

industries, and diverse stakeholders. 

Effective governance requires coordinating 

actions among various actors and managing 

conflicts arising from incompatible values 

(Aven and Renn, 2016). The perception of 

risk becomes especially important, as 

technical experts often assess risks 

differently than the general society (Slovic, 

1987). 

Organizational learning theory explains how 

organizations develop their capacity over 

time (Argyris and Scho¨n, 1978). Single-loop 

learning involves identifying and correcting 

errors within existing assumptions, while 

double-loop learning questions those 

assumptions and can lead to changes in 

organizational strategies (Senge, 1990). In 

cybersecurity, communities of practice play 

a crucial role as they facilitate ongoing 

knowledge creation to keep pace with rapidly 

evolving threats (Wenger, 1998). 

The NIST Cybersecurity Framework has 

seen widespread adoption due to its user-

friendly structure, which organizes 

cybersecurity activities into five core 

functions: Identify, Protect, Detect, Respond, 

and Recover (NIST, 2024). However, there 

are limitations to protecting critical 

infrastructure. Its voluntary nature has 

contributed to broad adoption, yet it provides 

limited guidance on the cross-organizational 

coordination needed to support 

interconnected infrastructure (Hathaway and 

Klimburg, 2023). Additional methods are 

offered through international standards such 

as ISO/IEC 27001 and IEC 62443 (ISO, 

2013). Although sector-specific regulations, 

including the North American Electric 

Reliability Corporation Critical 

Infrastructure Protection (NERC CIP) 

standards for the energy sector and the 

Health Insurance Portability and 

Accountability Act (HIPAA) requirements 

for the healthcare sector, provide more 

detailed and enforceable controls, they 

further complicate the governance landscape 

by introducing fragmented, sector-bound 

compliance regimes that are often misaligned 

with the interconnected nature of critical 

infrastructure systems (IEC, 2018). As a 

result, organizations operating across 

multiple sectors or supply chains must 

navigate overlapping and sometimes 

conflicting regulatory expectations, which 

can hinder information sharing, slow 

coordinated response efforts, and ultimately 

weaken system-wide cyber resilience. 

The federal policy environment has 

undergone significant change. Presidential 

Policy 21 identified critical infrastructure 

sectors and designated Sector Risk 

Management Agencies (Obama, 2013). The 

2015 Cybersecurity Information Sharing Act 

provided a legal basis for sharing 

information (Congress, 2015), while the 

2018 Cybersecurity and Infrastructure 

Security Agency Act established CISA 

within DHS (Congress, 2018). Additionally, 

Executive Order 14028 mandated security 

protocols for federal agencies following 

high-profile attacks (Biden, 2021). 

Despite these efforts, significant gaps 

remain. Interoperability between 

frameworks is limited, and organizations 

face conflicting requirements from various 

regulatory systems. Existing solutions lack 

adaptive governance capable of quickly 

responding to threats. The private sector's 

participation incentives are weak, and 

resilience assessment measures are still 

under development. 

Fig. 1 displays 16 critical infrastructure 

sectors identified by CISA, connected by 

lines showing interdependencies, such as 

energy's reliance on IT and communications, 

healthcare on water and energy, and finance 

on communications. 
 

2.0 Materials and Method  

 

Creating a strategic framework for cyber risk 

governance requires a methodology that can 

synthesize empirical insights from diverse 

sources. This study employed a combination 

of systematic literature review, expert 

consultation, a comparison framework, and 

case analysis to develop a comprehensive 

and practical framework. The research 

followed design science principles (Hevner 
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et al., 2004; Siame et al., 2023), focusing on 

creating a new artifact rather than testing 

hypotheses about existing phenomena. The 

goal is for the framework to effectively 

address real-world problems, be feasible for 

implementation, and surpass current methods 

(March and Smith, 1995). 

Table 1 is introduced to provide a structured 

comparison of the major cybersecurity 

frameworks currently applied to the 

protection of critical infrastructure in the 

United States and internationally. As 

discussed in the preceding sections, the 

governance landscape for critical 

infrastructure cybersecurity is highly 

fragmented, with organizations often 

required to comply with multiple 

frameworks that differ in scope, 

enforceability, and operational focus. Table 1 

summarizes these frameworks by outlining 

their scope, key strengths, limitations, and 

primary drivers of adoption, thereby offering 

a concise overview of how existing 

approaches shape cyber risk governance 

across sectors. 

As shown in Table 1, widely adopted 

frameworks such as the NIST Cybersecurity 

Framework and ISO/IEC 27001 emphasize 

flexibility and broad applicability, which has 

supported widespread uptake but has also 

limited their ability to enforce consistent 

security behaviors across interconnected 

sectors. Sector-specific and mandatory 

standards, such as NERC CIP for the electric 

sector and the HIPAA Security Rule for 

healthcare, provide clearer accountability 

and enforceable controls, yet they tend to be 

compliance-focused and narrowly scoped, 

reducing adaptability to evolving threats and 

cross-sector interdependencies. The 

comparison highlights a central governance 

challenge addressed by this study: while 

existing frameworks provide valuable 

guidance, none alone adequately support 

adaptive, intelligence-led, and system-wide 

resilience. This gap underscores the need for 

an integrated strategic framework that aligns 

governance structures, real-time threat 

intelligence, and resilience-building 

mechanisms across critical infrastructure 

sectors. 

 
Fig, 1: US Critical Infrastructure Sectors and Their Interdependencies. 
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Table 1: Comparison of Major Cybersecurity Frameworks for Critical Infrastructure 

 

Framework Scope Key Strengths Limitations Adoption 

Drivers 

NIST CSF Cross-sector, 

voluntary 

Flexible, 

outcomefocused, 

widely recognized 

Limited 

enforcement, generic 

guidance 

Regulatory 

expectations, 

customer 

requirements 

ISO/IEC 

27001 

International 

standard 

Comprehensive 

certification 

available 

Resource-intensive, 

documentation-

heavy 

Market 

differentiation, 

contractual 

requirements 

IEC 62443 Industrial 

control 

systems 

OT-specific, 

safetyintegrated 

Complex im- 

plementation, 

evolving standard 

Operational 

technology 

security needs 

NERC CIP Electric sector, 

mandatory 

Enforceable, spe- 

cific controls 

Compliancefocused,

 limited 

flexibility 

Regulatory 

compliance, 

financial 

penalties 

HIPAA 

Security 

Rule 

Healthcare 

sector 

Privacy-

integrated, 

baseline 

requirements 

Outdated, 

insufficient for 

current 

threats 

Legal 

compliance, 

patient trust 

 

3.0`Results and Discussion 
 

Our initial step involved conducting a 

systematic review of academic papers, policy 

reports, and industry publications from 2015 

to 2025. This period includes major events 

such as the 2015 power grid attack in 

Ukraine, the 2017 NotPetya malware 

outbreak, and ransomware attacks on critical 

infrastructure that began in 2019 (Greenberg, 

2019). Literature searches were performed 

across multiple databases, including Scopus, 

Web of Science, IEEE Xplore, ACM Digital 

Library, and Google Scholar. An initial 

search yielded over 1,200 potentially 

relevant sources, which were then screened 

for relevancy. Ultimately, 276 sources were 

selected for detailed review, with thematic 

analysis employed to identify key themes, 

tensions, and gaps. These findings provided 

an empirical foundation for assessing 

governance maturity, identifying systemic 

weaknesses, and informing the design of the 

proposed strategic framework. 

The literature review was complemented by 

expert consultations that incorporated tacit 

knowledge. We conducted semi-structured 

interviews with 27 cybersecurity experts, 

including eight federal government officials, 

12 CISOs and security directors from the 

private sector, four academic researchers, 

and three cybersecurity consultants. The 

interviews addressed current governance 

practices, the perceived benefits and 

drawbacks of existing frameworks, obstacles 

to effective governance, experiences with 

information sharing, significant incidents 

and lessons learned, and potential 

improvements. Across sectors, experts 

consistently emphasized that governance 

fragmentation, delayed information sharing, 

and unclear accountability structures were 

more limiting than purely technical security 

deficiencies 

The case studies analyzed real-world 

examples of governance successes and 

failures. We examined five major 
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cyberattacks, including the Colonial Pipeline 

ransomware attack (2021), the JBS Foods 

attack (2021), the Oldsmar water treatment 

facility intrusion (2021), COVID-19-related 

healthcare ransomware incidents (2020-

2021), and the SolarWinds supply chain 

breach (2020). Additionally, we compared 

governance approaches, focusing on the 

European Union's NIS2 Directive, the United 

Kingdom's National Cyber Security 

Strategy, and Australia's Critical 

Infrastructure Protection legislation. 

The development of the frameworks was 

driven by ongoing discussions that integrated 

theoretical knowledge, factual information, 

professional insights, case studies, and global 

practices. Validation involved multiple 

methods, including two rounds of Delphi 

with fifteen experts, presentations at 

practitioner conferences, and evaluations by 

CISOs from three companies with critical 

infrastructure. 
 

3.1  Current State Assessment 
 

The modern threat landscape reflects the 

democratization of advanced attack methods 

and the rise of state-sponsored operations. 

Ransomware attacks are the most common 

immediate threat, with their prevalence in 

critical infrastructure rising threefold from 

2019 to 2023 (FBI, 2024). APT actors from 

China, Russia, Iran, and North Korea have 

maintained persistent campaigns targeting 

critical infrastructure networks (Mandiant, 

2023). The SolarWinds breach highlighted 

how supply chain attacks can compromise 

numerous targets simultaneously (Gallagher, 

2020), while the Volt Typhoon operation 

specifically targeted US critical 

infrastructure operational technology 

networks (CISA, 2023).  

We reviewed governance maturity across 

industries, revealing significant variation. 

Using a five-level maturity model based on 

CMMI (CMMI, 2010), the most mature 

sectors are financial services and the defense 

industrial base, both of which are subject to 

strict regulation. Energy and 

communications are moderately highly 

mature. Conversely, healthcare, 

water/wastewater, and food/agriculture tend 

to be less mature, mainly due to resource 

constraints and minimal regulatory 

requirements. 

Table 2 is presented to extend the 

comparative analysis by focusing on the 

operational and technical mechanisms 

through which cybersecurity resilience is 

implemented across critical infrastructure 

sectors. While Table 1 emphasizes 

governance structures and regulatory 

frameworks, Table 2 shifts attention to the 

practical tools, technologies, and processes 

that organizations deploy to detect, prevent, 

respond to, and recover from cyber incidents. 

This distinction is important because 

effective cybersecurity in critical 

infrastructure depends not only on 

compliance with frameworks, but also on 

how technical controls and operational 

practices are integrated into day-to-day 

system operations. 

As summarized in Table 2, preventive 

controls such as network segmentation, 

access control, and secure system 

architecture form the first line of defense, but 

their effectiveness is highly dependent on 

sector-specific operational constraints and 

legacy infrastructure. Detection and response 

mechanisms—including intrusion detection 

systems, security information and event 

management (SIEM), and incident response 

protocols—are shown to play a critical role 

in limiting the impact of attacks, particularly 

in environments where real-time operations 

and safety considerations restrict system 

downtime. The table also highlights 

disparities in maturity across sectors, with 

energy and finance generally exhibiting more 

advanced monitoring and response 

capabilities than water, transportation, and 

healthcare systems. Overall, Table 2 

reinforces the study’s argument that technical 

controls must be tightly aligned with 

governance frameworks and risk 

management strategies to achieve adaptive, 

system-wide cyber resilience across 

interconnected critical infrastructure 

networks. 
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3.1 The Strategic Framework: Core 

Components 
 

Our strategic framework rests on four 

interconnected pillars, each addressing 

different but related governance challenges.  

Pillar 1: Adaptive Governance Structures 

recognizes that static governance models 

cannot keep pace with rapidly evolving cyber 

threats. Effective governance should 

incorporate continuous learning 

mechanisms, regular reviews, and swift 

adaptability. This pillar emphasizes dynamic 

policy tools, such as sunset clauses that 

require periodic policy re-evaluation

 

Table 2: Critical Infrastructure Sectors- Threat Profile and Governance Maturity 

Matrix. 

 

Sector Primary Threats Key 

Vulnerabilities 

Maturity Level Governance 

Gaps 

Energy State actors, 

ransomware, 

physicalcyber 

convergence 

Legacy SCADA, 

supply chain, 

remote ac- 

cess 

High (Tier 3-4) Small operator 

coverage, OT-IT 

integration 

Financial Ser- 

vices 

State actors, 

organized crime, 

insider 

threats 

Third-party 

dependencies, data 

aggregation 

Very High (Tier 

4) 

Cross-border 

coordination, 

fintech 

integration 

Healthcare Ransomware, data 

breaches, medical 

device attacks 

Resource 

constraints, legacy 

devices, 

fragmentation 

Low-Moderate 

(Tier 2) 

Small facility 

capacity, 

operational 

continuity 

emphasis 

Transportation State actors, 

ransomware, 

GPS/navigation 

threats 

Physical-digital 

interfaces, legacy 

systems 

Moderate (Tier 

2- 

3) 

Modal 

fragmentation, 

international 

coordination 

Water Systems Ransomware, 

state actors, 

SCADA in- 

trusions 

Underfunding, 

small operator 

capacity, 

remote access 

Low (Tier 1-2) Resource 

limitations, 

distributed 

ownership 

 

These flexible regulations and policy 

strategies prioritize results over strict rules, 

clear roles and responsibilities, and 

streamlined decision-making during crises 

(Siame et al., 2024). It also relies on 

regulatory sandboxes, similar to those used 

in financial technology regulation (Zetzsche 

et al., 2017; Akagbue et al., 2023; Siame et 

al., 2025), and the UK’s model of outcome-

based regulation combined with active 

engagement (NCSC, 2022). Pillar 2: Real-

Time Threat Intelligence Integration deals 

with the core information asymmetry 

between the defenders of the infrastructure 

and the advanced adversaries. This pillar 

envisions an intelligence ecosystem in which 

actionable threat information is delivered to 

defenders as quickly as possible and in 

formats that can be used immediately. The 

main elements are automated threat detection 

and sharing systems, redesigned Information 

Sharing and Analysis Centers with more 

resources, the ability to bridge classified 

intelligence and unclassified operations, and 

predictive analytics using artificial 

intelligence. The pillar needs to overcome 
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the cultural and legal barriers to sharing 

information (Omosunlade, 2024; Sanni, 

2024). The FS-ISAC of the financial industry 

illustrates the results of the continuous 

investment and executive involvement (FS-

ISAC, 2023). 

Pillar 3: Cross-Sector Collaboration 

Mechanisms recognizes that relationships 

within critical infrastructure mean sector 

security alone is insufficient for systemic 

resilience. The Colonial Pipeline attack 

disrupted transportation systems, impacting 

fuel supplies and supply chains across 

various fields. Achieving the necessary 

collaboration requires both horizontal 

coordination between sectors and vertical 

integration from federal to local levels. Such 

mechanisms include joint exercises to test 

cross-sector response, shared situational 

awareness during crises, mutual aid 

agreements for resource exchange, and 

Sector Coordinating Councils with clear 

protocols for rapid activation in emergencies 

(NATO, 2023).  

Pillar 4: Resilience-Building Capabilities 

focuses on systematically developing 

institutional, technical, and human capacities 

essential for infrastructure resilience. Key 

aspects include strategic redundancy of 

critical systems, standards for rapid recovery 

to enable quick restorations, continuous 

capability testing through red team exercises 

and tabletop simulations, workforce 

preparedness to address the cybersecurity 

skills shortage, and channels for adopting 

innovative technologies. This pillar 

emphasizes that capability development is a 

long-term investment to be built gradually 

(DHS, 2023). 

These four pillars do not operate in isolation; 

instead, they function synergistically. 

Adaptive governance creates dynamic 

systems essential for fostering successful 

cooperation. Intelligence integration 

enhances threat awareness, guiding 

governance decisions and priorities for 

capability development. Cross-sector 

cooperation enables sharing of information 

with intelligence agencies and helps identify 

common areas of need. Governance 

structures are valuable because they offer 

opportunities to build resilience and enable 

organizations to adopt necessary practices. 

This integrated design ensures that 

improvements in one governance dimension 

reinforce progress in others, creating a 

cumulative effect on overall system 

resilience. 

Fig. 4 illustrates the four pillars of the 

framework: Adaptive Governance 

Structures, Real-Time Threat Intelligence 

Integration, Cross-Sector Collaboration, and 

Resilience Building, connected to ensure 

critical infrastructure resilience. Arrows 

indicate interdependencies: adaptive 

governance facilitates collaboration, 

intelligence informs capability development, 

collaboration supports information sharing, 

and resilience aids governance adaptation. 

Theoretical foundations include resilience 

theory, risk governance, and organizational 

learning, while external factors such as the 

threat landscape, technological evolution, 

and policy context are depicted in the 

surrounding environment. 
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Fig. 2: The Strategic Framework Architecture, Four Pillars Integration Model.  
 

3.2 Implementation Mechanisms 

The translation of the abstract framework 

elements into operational practice must be 

implemented across three levels: 

governance, operational, and strategic. The 

governance level will establish national 

coordination arrangements in which CISA 

will have enhanced coordination provisions. 

The operational level focuses on daily 

security operations and incident response, 

particularly regarding information sharing 

and standard operating procedures. The 

strategic level involves long-term planning 

and resource allocation by defining priorities 

for capability development through multi-

year plans. Sector-specific applications 

recognize that one size does not fit all 

practices. Implementing the framework in 

the energy industry should align with current 

NERC CIP requirements. In healthcare, 

implementation must address unique 

constraints such as the importance of patient 

safety and the security of medical devices. 

Fintech integration and global dependencies 

pose ongoing challenges to financial 

services. Transport systems are diverse in 

terms of modes of coordination and 

operational variations. 

Table 3 presents the Sector-Specific 

Framework Customization Matrix, 

translating the strategic pillars of the 

cybersecurity framework into actionable 

priorities tailored to each critical 

infrastructure sector. While the overarching 

framework establishes adaptive governance, 

intelligence integration, collaboration, and 

resilience building, Table 3 emphasizes the 

operationalization of these principles 

according to sector-specific needs, 

acknowledging that each sector faces distinct 

threats, operational constraints, and 

regulatory requirements. 

For the energy sector, the focus is on 

integrating operational technology (OT) and 

information technology (IT) systems, 

addressing supply chain vulnerabilities, and 

supporting smaller operators, with 

intelligence oriented toward state actor 

tactics and supply chain threats. 

Collaboration priorities highlight 

interdependent utilities and fuel supply 

coordination, while capabilities emphasize 

legacy system security and workforce 

training. The financial sector requires cross-

border coordination, fintech regulation, and 

intelligence focused on fraud, ransomware, 

and advanced persistent threats, with 

collaboration extending to international 

partnerships and the vendor ecosystem; 

critical capabilities include quantum-safe 

cryptography and AI/ML-driven security 

measures. Healthcare prioritizes patient 

safety, medical device security, and support 

for smaller facilities, with intelligence aimed 

at healthcare-targeting ransomware and 

device vulnerabilities; collaboration focuses 

on hospital associations and device 

manufacturers, emphasizing basic 
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cybersecurity practices, segmentation, and 

recovery strategies. Transportation sectors 

face challenges related to modal 

coordination, GPS resilience, and 

autonomous systems, with intelligence 

focused on navigation attacks and 

ransomware; collaboration occurs through 

mode-specific Information Sharing and 

Analysis Centers (ISACs) and international 

coordination, while capabilities emphasize 

autonomous vehicle security and legacy fleet 

management. 

Overall, Table 3 illustrates the necessity of 

customizing cybersecurity governance and 

operational strategies to sector-specific 

contexts, reinforcing that effective 

implementation depends on aligning 

governance priorities, intelligence focus, 

collaboration mechanisms, and capability 

development with the unique operational 

realities and threat landscapes of each critical 

infrastructure sector. This approach ensures 

that the strategic framework is not only 

theoretically robust but also practically 

applicable, enhancing resilience, risk 

management, and adaptive capacity across 

the United States’ critical infrastructure 

systems. 

Looking ahead, new challenges will test the 

adaptability of existing structures. Artificial 

intelligence presents both risks and 

opportunities (Brundage et al., 2018). 

Quantum computing threatens current 

encryption methods and calls for a shift to 

post-quantum cryptography (NIST, 2022). 

The globalization of supply chains increases 

reliance on components from potentially 

hostile countries. Additionally, climate 

change is increasingly linked to 

cybersecurity concerns, as infrastructure 

faces greater exposure to cyber-physical 

attacks. Successful implementation therefore 

requires aligning regulatory authority, 

operational responsibility, and long-term 

investment strategies across all levels of 

governance 
 

Table 3: Sector-Specific Framework Customization Matrix 
 

Sector Governance 

Priorities 

Intelligence Focus Collaboration 

Needs 

Capability 

Empha- 

sis 

Energy OT-IT integration, 

supply chain, 

small operator 

support 

State actor TTPs, 

supply chain threats 

Interdependent 

utilities, fuel 

supply 

coordination 

Legacy system 

security, 

workforce 

training 

Financial Fintechregulation, 

cross-border 

coordination 

Fraud schemes, 

ransomware, APTs 

International 

partnerships, 

vendor ecosystem 

Quantum-safe 

cryptography, 

AI/ML security 

Healthcare Patient safety 

balance, device 

security, small 

facility support 

Healthcare-targeting 

ransomware,medical 

device 

vulnerabilities 

Hospital 

associations, 

device 

manufacturers 

Backup/recovery, 

segmentation, 

security basics 

Transportation Modal 

coordination, GPS 

resilience, 

autonomous 

systems 

Navigation attacks, 

ransomware, supply 

chain 

Mode-specific 

ISACs, 

international 

coordination 

Autonomous 

vehicle 

security, legacy 

fleet 

 

3.4 International Comparison and 

Future Considerations 
 

Global strategies provide useful insights into 

other governance frameworks. The European  
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Union's NIS2 Directive sets a mandatory 

cybersecurity standard, imposing significant 

fines for non-compliance (EU, 2022). The 

UK's National Cyber Security Centre 

emphasizes government-industry 

collaboration through active participation 

(NCSC, 2022). Australia's legislation also 

includes provisions for government 

assistance and intervention authorities  

(Australia, 2021). These international models 

illustrate how mandatory standards, 

enforcement mechanisms, and active 

government engagement can significantly 

elevate baseline cybersecurity performance. 

Table 4 presents the Framework 

Performance Measurement Dashboard, 

which operationalizes the strategic 

cybersecurity framework by providing 

quantitative and qualitative metrics to 

evaluate governance effectiveness, resilience 

capabilities, collaboration quality, incident 

response efficiency, and investment 

efficiency across critical infrastructure 

sectors. The dashboard translates abstract 

framework principles into measurable 

indicators, enabling continuous monitoring, 

evidence-based decision-making, and 

accountability for both public and private 

stakeholders. 

Governance effectiveness is assessed 

through metrics such as ISAC participation 

rates, policy update frequency, and 

compliance levels, providing insights into 

how well sector organizations adhere to 

strategic guidance and regulatory 

expectations. Resilience capabilities are 

measured by recovery time, backup integrity, 

and workforce readiness, reflecting an 

organization’s ability to anticipate, absorb, 

adapt, and recover from cyber disruptions. 

Collaboration quality metrics, including 

information sharing volume and exercise 

participation, evaluate the efficiency and 

effectiveness of cross-sector and inter-

organizational coordination, highlighting the 

degree to which interdependencies are 

managed proactively. Incident response is 

quantified via detection time, containment 

speed, and recovery duration, offering a 

performance-based perspective on 

operational readiness and crisis management. 

Investment efficiency considers security 

spending relative to returns on investment, 

ensuring that financial resources allocated to  

cybersecurity initiatives achieve tangible 

improvements in risk reduction and 

operational resilience. 

By integrating these performance indicators, 

Table 4 provides a structured mechanism to 

assess the practical implementation of the 

strategic framework, enabling continuous 

improvement and adaptive learning. It 

ensures that sector-specific strategies are 

effectively aligned with overarching goals of 

enhancing resilience, strengthening 

governance, and maintaining operational 

continuity in the face of evolving cyber 

threats. This dashboard supports proactive 

decision-making and strategic prioritization, 

facilitating a measurable pathway toward 

national cybersecurity resilience. 

 
 

Table 4: Framework Performance Measurement Dashboard 
 

Metric Category Key Indicators Measurement

 Approach 

Target Benchmarks 

Governance 

Effectiveness 

ISAC participation 

rates, policy update 

frequency, and 

compliance levels 

Surveys, 

administrative data, 

audit results 

85% sector 

participation, annual 

policy review, 95% 

compliance 

Resilience 

Capabilities 

Recovery time, backup 

integrity,workforce 

readiness 

Exercise results, 

testing, certification 

tracking 

RTO <24 hours for 

critical systems, 

quarterly tests passing 
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Collaboration 

Quality 

Information sharing 

volume/velocity, 

exercise participation 

System logs, event 

attendance, and 

feedback surveys 

<1 hour for critical 

threat indicators, 

biannual exercises 

Incident Response Detection time, 

containment speed, 

recovery duration 

Incident data 

analysis, 

postincident 

reviews 

Detect <24 hours, 

contain <48 hours, 

recover <5 days 

Investment 

Efficiency 

Securityspendingratio, 

ROI calculations 

Financial data, 

impact assessments 

8-12% of IT budget, 

positive ROI on major 

initiatives 

The proposed performance metrics enable 

continuous monitoring, support evidence-

based decision-making, and provide 

accountability mechanisms for both public 

and private stakeholders. Looking ahead, 

new challenges will test the adaptability of 

existing structures. Artificial intelligence 

presents both risks and opportunities 

(Brundage et al., 2018; Amougou, 2023). 

Quantum computing threatens current 

encryption methods and calls for a shift to 

post-quantum cryptography (NIST, 2022). 

The globalization of supply chains increases 

reliance on components from potentially 

hostile countries. Additionally, climate 

change is increasingly linked to 

cybersecurity concerns, as infrastructure 

faces greater exposure to cyber-physical 

attacks (Okolo, 2023). Addressing these 

emerging challenges will require governance 

systems that are anticipatory rather than 

reactive, reinforcing the need for a strategic 

framework grounded in adaptability, 

collaboration, and resilience. 

4.0   Conclusion 

The current cybersecurity concerns of the 

United States' critical infrastructure 

necessitate a fundamentally different 

governance approach compared to the 

existing, fragmented compliance-based 

models. This paper presents a strategic 

framework designed to address this 

imperative, comprising four integrated 

pillars: adaptive governance structures 

capable of responding to threats in real time, 

the integration of threat intelligence to 

overcome information asymmetries, cross-

sector collaboration mechanisms 

acknowledging infrastructure 

interdependence, and systematic resilience-

building capabilities. The framework draws 

upon resilience theory, risk governance 

scholarship, and organizational learning, 

combining practical insights gained recently 

with international comparisons to ensure 

both theoretical rigor and operational 

feasibility. Achieving this requires long-term 

commitment from government entities and 

private sector stakeholders, appropriate 

resource allocation, the cultivation of trust 

through positive collaborative experiences, 

and a cultural shift recognizing cybersecurity 

as a strategic necessity. The path forward 

involves advancing beyond mere compliance 

to attain genuine resilience, transcending 

sectoral responses to develop comprehensive 

national strategies, and moving beyond 

reactive measures to proactive preparedness. 

This framework offers a strategic roadmap 

for such transformation; however, its success 

depends on a collective commitment to long-

term resilience rather than short-term 

comfort and on investing in the capacity to 

withstand catastrophic events rather than 

merely responding to them. Further research 

is essential to evaluate the practical 

implementation of this framework, address 

technical challenges such as securing 

operational technologies and supply chains, 

and analyze the governance implications of 

emerging technologies transforming 

infrastructure. The stakes include national 

security, economic prosperity, and societal 

well-being, warranting nothing less than a 

dedicated effort to strengthen the 
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foundational governance structures upon 

which modern civilization relies. 
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