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Abstract: Accurate electricity load forecasting is 

crucial for effective energy management, grid 

stability, and optimal resource allocation. This 

study introduces a novel hybrid forecasting 

model, the Genetic Algorithm-Bat Algorithm-

Support Vector Regression (GA-BA-SVR), 

designed to enhance short-term and long-term 

electricity load prediction accuracy. The model’s 

performance was rigorously evaluated using key 

statistical metrics, demonstrating superior 

predictive capability compared to standalone and 

other hybrid models. The GA-BA-SVR model 

achieved a Mean Absolute Percentage Error 

(MAPE) of 0.2777% for 24-hour ahead forecasts 

and 2.4902% for 168-hour ahead forecasts. It 

also attained a high R-squared value of 

0.99999988 for long-term predictions, indicating 

an exceptional fit to actual load data. Pearson 

Correlation Coefficient values remained 

consistently above 0.9999, further validating the 

model’s robustness. Despite its high accuracy, 

challenges such as increased Mean Absolute 

Error (MAE) reaching 55.1124 MW during 

weekday load fluctuations and variations in 

convergence times between 2.236 and 9.443 

seconds were observed. Future improvements 

should focus on optimizing the model’s real-time 

applicability and incorporating additional input 

variables, such as weather conditions and 

economic indicators, to further refine its 

predictive performance. These enhancements will 

improve the model’s reliability and practical 

implementation in energy management systems. 
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1.0 Introduction 
 

The role of short-term load forecasting 

(STLF) in the operation and management of 

power systems is very significant (Liu et al., 

2025). Based on the works of  Gebre et al. 

(2024), Chen et al. (2020),  accurate 

forecasting is essential for power generation 

scheduling, grid stability, operational cost 

reduction, and overall energy efficiency. 

Traditional forecasting techniques, including 

statistical methods such as Autoregressive 

Integrated Moving Average (ARIMA), 

Exponential Smoothing, and classical 

regression models, have been widely used in 

STLF ((Annamalai et al., 2023; Hyndman & 

Athanasopoulos, 2018; Schmid et al., 2025; 

Tjøstheim, 2025). However, these approaches 

often struggle to capture the nonlinear and 

complex patterns inherent in load demand, 

which are influenced by multiple factors such 

as weather conditions, economic activities, 

and consumer behaviour (Hasan et al., 

2025a). 

In recent years, machine learning techniques 

have emerged as powerful alternatives for 

addressing the limitations of traditional 

forecasting methods. Among these, Support 

Vector Regression (SVR) has gained 

popularity due to its ability to handle 

nonlinear relationships and generate robust 

predictions (Zhang et al., 2024). However, 

the performance of SVR is highly dependent 

mailto:tonyeig@yahoo.com
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on the appropriate selection of its parameters, 

necessitating optimization techniques such as 

Genetic Algorithms (GA) (Karimi et al., 

2024)). Also, GA, inspired by the principles 

of natural selection, has been widely 

employed for parameter tuning in machine 

learning models, including SVR, leading to 

enhanced forecasting accuracy (Uzunoglo et 

al., 2025). 

Another promising optimization approach is 

the Bat Optimization Algorithm (BA), which 

mimics the echolocation behavior of bats to 

solve complex optimization problems 

(Araujo-Neto et al., 2025). BA has 

demonstrated effectiveness in improving 

model performance through its balanced 

exploration and exploitation capabilities 

(Araujo-Neto et al., 2025). Hybrid 

optimization approaches that combine 

multiple algorithms can leverage the 

strengths of each while mitigating their 

individual weaknesses. For instance, 

integrating SVR with GA and BA can 

enhance predictive accuracy by optimizing 

SVR parameters and fine-tuning the weights 

and biases in an Artificial Neural Network 

(ANN) (Gupta et al., 2021). 

While various hybrid models have been 

proposed for STLF, most existing studies 

focus on combinations of two algorithms 

rather than three. Additionally, few studies 

have explored the simultaneous optimization 

of SVR parameters using GA while refining 

ANN weights and biases with BA. 

Furthermore, existing research 

predominantly evaluates models on standard 

datasets, with limited application to real-

world power system data, particularly in the 

context of Nigeria (Adebayo et al., 2019). To 

address these gaps, this study introduces a 

novel hybrid model that integrates SVR, GA, 

BA, and ANN for STLF and evaluates its 

performance using real-world data from the 

National Control Centre of the Transmission 

Company of Nigeria. 

The primary aim of this study is to develop 

and evaluate a hybrid machine learning 

model that integrates SVR, GA, BA, and 

ANN for improved short-term load 

forecasting accuracy. The specific objectives 

of the study are: 

(i) To investigate the limitations of 

existing STLF methods and identify 

areas for improvement. 

(ii) To develop a hybrid forecasting 

model that integrates SVR, GA, BA, 

and ANN. 

(iii)To optimize SVR parameters using 

GA and fine-tune ANN weights and 

biases using BA. 

(iv) To evaluate the proposed model's 

performance using real-world 

electricity load data. 

(v) To compare the accuracy and 

computational efficiency of the 

hybrid model against traditional and 

existing hybrid forecasting models. 

(vi) To provide insights into the 

applicability of hybrid optimization 

techniques in power system 

forecasting and energy management. 

By addressing the identified gaps and 

leveraging advanced machine learning and 

optimization techniques, this study aims to 

contribute to the field of short-term load 

forecasting and improve decision-making 

processes in power system operations. 
 

1.1 Theoretical Framework 
 

Support vector regression (SVR) is an 

extension of the support vector machine 

(SVM) algorithm designed for regression 

problems (Zhang et al., 2020). SVR 

effectively handles nonlinear data by utilizing 

kernel functions to transform the input space 

into a higher-dimensional feature space. The 

objective of SVR is to determine a function 

that approximates the data within a specified 

margin of tolerance (Hasan et al., 2025b). 

Due to its ability to model complex 

relationships and generate robust predictions 

even with limited data, SVR has been 

successfully applied to various forecasting 

tasks, including load forecasting (Jia et al., 

2025). 

Genetic algorithms (GAs) are optimization 

techniques inspired by the principles of 

natural selection and genetics (Waysi et al., 

2024). They are particularly beneficial for 
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solving complex optimization problems with 

large search spaces where traditional methods 

may be inefficient. GA has been extensively 

used for parameter tuning in predictive 

models, including SVR, due to its ability to 

explore a broad solution space and converge 

to optimal or near-optimal solutions 

(Mumtahina et a;., 2024). 

A GA typically involves the following 

steps(Hassanat et al., 2019): 

(i) Initializing a population of potential 

solutions. 

(ii) Evaluating their fitness based on a 

predefined objective function. 

(iii)Selecting the best-performing 

solutions for reproduction. 

(iv) Applying crossover and mutation 

operators to generate new offspring. 

(v) Iterating the process until a 

satisfactory solution is found or a 

maximum number of generations is 

reached  

GAs are widely utilized for parameter tuning 

in predictive models, including SVR, due to 

their ability to explore a broad solution space 

and converge to optimal or near-optimal 

solutions (Hasan et al., 2025b). Inspired by 

Charles Darwin’s theory of natural evolution, 

GAs are adaptive heuristic search algorithms 

used for solving both constrained and 

unconstrained optimization problems. They 

generate high-quality solutions to 

optimisation and search problems based on 

bio-inspired operators such as mutation, 

crossover, and selection. 

The basic concept of GA was introduced by 

Holland (1975) at the University of Michigan. 

GA employs a guided random approach to 

explore the solution space, leveraging genetic 

rules of crossover and mutation. GA 

optimization is applicable in various control 

processes for parameter optimization through 

mutation and crossover operators (Meniz & 

Tiryaki, 2024). Proper selection of crossover 

and mutation values depends on the problem's 

demands and encoding methods (Katoch et 

al., 2021). 

Three main types of rules are used in GAs to 

create the next generation from the current 

population: 

• Selection rules: Identify parents that 

contribute to the next generation. 

• Crossover rules: Combine two 

parents to form offspring. 

• Mutation rules: Introduce random 

changes to individuals to ensure 

diversity. 

Upon initialization, the population undergoes 

an evaluation process where specific 

individuals are selected for crossover to 

generate a new population with combined 

characteristics of the previous generation. 

Following crossover and mutation, the new 

population is re-evaluated until a satisfactory 

solution is achieved. The results of crossovers 

are the offspring, while mutation randomly 

alters some genes of the parents (Ktoch et al., 

2021). GA, as an optimization technique, is 

effective in searching vast solution spaces to 

achieve optimal results. 

GA search begins with a population of 

potential solutions (chromosomes) and 

evolves across generations, enhancing their 

fitness (Khamprapai et al., 2021). Individuals 

are selected based on their fitness function to 

create offspring. GA operations include 

selection, crossover, mutation, and elitism, 

where elite individuals are directly carried 

forward to the next generation (Guariso & 

Sangiorgio, 2020). 

The steps used in this study for GA 

implementation are as follows (Roy et al: 

(i) Initial population: Random 

generation of feasible solutions. 

(ii) Objective function: Calculation of 

fitness values for generated solutions. 

(iii)Selection strategy: The roulette 

wheel strategy is used for crossover, 

while random selection is employed 

for mutation. 

(iv) Crossover operator: Selected 

parents undergo crossover to produce 

offspring. 

(v) Mutation operator: Mutation 

introduces diversity by altering gene 

sequences. 

(vi) Stopping criterion: The algorithm 

terminates after a specified number of 

. 
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Compared to conventional optimization 

algorithms, GAs offer several advantages, 

including the ability to handle complex 

problems and parallelism. They effectively 

optimize diverse functions, whether linear or 

nonlinear, continuous or discontinuous 

(Bertsimas  & Margaritis, 2025). GAs enable 

simultaneous exploration of multiple search 

directions, making them well-suited for 

parallel implementation. 

However, GAs have some drawbacks. The 

formulation of the fitness function, choice of 

population size, mutation and crossover rates, 

and selection criteria must be carefully 

configured. Poor parameter selection may 

lead to slow convergence or suboptimal 

results (Al-Terkawi, & Migliavacca, 2025). 

Despite these limitations, GAs remain one of 

the most widely used optimization algorithms 

in modern nonlinear optimization. 

Several studies have demonstrated the 

effectiveness of hybrid AI techniques 

integrating GA for STLF. For example, 

Adebunmi et al. (2021) explored the use of a 

hybrid AI approach, specifically 

incorporating Neuro-Fuzzy modelling and 

Genetic Algorithm (GA) for enhanced 

forecasting accuracy. Their study compared 

the performance of three models—Adaptive 

Neuro-Fuzzy Inference System (ANFIS), 

Artificial Neural Network (ANN), and 

Multilinear Regression (MLR)—within a 

MATLAB environment. The models were 

evaluated using Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE), 

with ANFIS demonstrating superior accuracy 

by achieving the lowest RMSE and MAE 

values of 2.2198% and 1.7932%, 

respectively. The findings suggest that 

integrating GA with AI-based models 

significantly enhances predictive 

performance in short-term load forecasting. 

The advantages of the adopted method were 

linked to the certainty that short-term load 

forecasting plays a vital role in electricity 

planning, system operation, and power utility 

management. However, traditional statistical 

methods, being inherently linear, often 

struggle to capture the complex nonlinear 

interactions between electrical load and 

meteorological parameters. As a result, these 

methods require significant computational 

effort for parameter estimation and frequently 

yield substantial forecasting errors. 

Iqbal et al. (2024) reviewed the effectiveness 

of hybrid artificial intelligence (AI) 

techniques, particularly those integrating 

Genetic Algorithms (GA), in enhancing 

short-term load forecasting (STLF). Their 

study emphasized that conventional statistical 

models often struggle with capturing the 

nonlinear dependencies between electrical 

load and meteorological variables, leading to 

high computational complexity and 

significant forecasting errors. To overcome 

these limitations, the researchers proposed a 

hybrid deep learning framework that 

integrates Bi-directional Long Short-Term 

Memory (BiLSTM) and Bi-directional Gated 

Recurrent Unit (BiGRU) models with a fully 

connected layer. They highlighted that 

incorporating GA into this architecture 

optimizes parameter selection, thereby 

improving forecasting accuracy. The model 

underwent a structured four-step process 

involving data collection, preprocessing, 

standardization, and training using historical 

demand and generation data. Performance 

evaluation based on metrics such as Mean 

Square Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and 

Mean Absolute Percentage Error (MAPE) 

demonstrated the model’s efficiency in 

predicting power demand and generation 

across different time intervals. Notably, their 

approach achieved an MSE of 0.0058 for load 

forecasting and 0.0033 for generation 

forecasting, outperforming state-of-the-art 

(SOTA) techniques in both accuracy and 

computational efficiency. The study 

concluded that hybrid AI models integrating 

GA significantly enhance smart grid 

reliability by providing precise and scalable 

forecasting solutions. 

Ji et al. (2023) examined the effectiveness of 

hybrid artificial intelligence (AI) techniques 

in improving short-term load forecasting 

(STLF), particularly in the residential 

electricity sector. Their study emphasized 

that economic and social development has led 
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to a significant increase in electricity demand, 

making accurate forecasting essential for 

optimizing residential energy consumption 

and mitigating climate change. To enhance 

forecasting accuracy, the researchers 

proposed a deep learning-based hybrid 

framework, DCNN-LSTM-AE-AM, which 

integrates Dilated Convolutional Neural 

Networks (DCNN), Long Short-Term 

Memory (LSTM) networks, Autoencoders 

(AE), and an Attention Mechanism (AM). 

This architecture was designed to improve 

feature extraction and capture both long-term 

and sequential dependencies in load data. The 

study introduced a T-nearest neighbours 

(TNN) algorithm for preprocessing raw data 

before utilizing DCNN to extract long-term 

patterns. Subsequently, the LSTM-AE 

module learned hidden sequence features, 

which were further refined using the AM to 

enhance prediction accuracy. Experimental 

results from two real-world datasets 

demonstrated the proposed model’s 

effectiveness in capturing fluctuations in low-

load data, outperforming conventional 

forecasting methods. The study highlighted 

that hybrid AI models leveraging deep 

learning architectures, such as DCNN and 

LSTM, provide superior accuracy in short-

term load prediction. The findings reinforce 

the potential of hybrid techniques in 

addressing the nonlinear and dynamic nature 

of electricity demand, thereby contributing to 

more reliable and efficient energy 

management strategies. 

The Bat Optimization Algorithm (BA), 

introduced by Xin-She Yang in 2010, is 

another nature-inspired metaheuristic 

algorithm based on the echolocation 

behaviour of bats. BA utilizes frequency 

tuning, pulse emission rates, and loudness 

adjustments for effective optimization (Alam 

et al., 2025). Wang et al. (2019) explored the 

Bat Algorithm (BA), a nature-inspired 

metaheuristic optimization technique 

developed by Xin-She Yang in 2010, which 

is modelled on the echolocation behaviour of 

bats. BA has been widely applied across 

various optimization problems due to its 

strong global search capabilities. The 

effectiveness of BA largely depends on key 

parameters such as loudness and frequency, 

which influence the algorithm’s ability to 

explore and exploit the search space 

efficiently. 

Despite its advantages, previous studies 

indicate that individual operators within BA 

contribute to performance enhancement only 

at specific stages of the optimization process. 

To address this limitation, Wang et al. 

proposed a novel variant known as the Bat 

Algorithm with Multiple Strategies Coupling 

(mixBA). This modified approach integrates 

diverse strategies to enhance overall 

optimization performance. The effectiveness 

of mixBA was assessed using the CEC2013 

benchmark test suite, and further statistical 

evaluations, including the Wilcoxon and 

Friedman tests, were conducted to compare 

its performance against other optimization 

algorithms. The findings demonstrated that 

mixBA achieved superior results across a 

majority of benchmark functions, confirming 

its improved efficiency and robustness in 

solving complex optimization problems. 
 

2.0 Materials and Methods 

2.1 Hybrid Algorithm Design 

2.1.1 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is an 

extension of the Support Vector Machine 

(SVM) algorithm, designed for regression 

problems (Rodríguez-Pérez & Bajorath, 

2022). SVR is effective in handling nonlinear 

data by using kernel functions to transform 

the input space into a higher-dimensional 

feature space. The objective of SVR is to find 

a function that approximates the data within a 

specified margin of tolerance (ϵ)(Avinash et 

al., 2023). SVR has been successfully applied 

to various forecasting tasks, including load 

forecasting, due to its ability to model 

complex relationships and provide robust 

predictions even with limited data [39]. 

The SVR model can be formulated as 

follows,  

Given a training dataset {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  where 

𝑥𝑖 ∈  ℝ𝑑 are input vectors and 𝑦𝑖  ∈ ℝ are the 

corresponding outputs, the goal of SVR is to 
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find a function 𝑓(𝑥) that has at most 𝜖 

deviation from the actual targets 𝑦𝑖 for all the 

training data, and at the same time is as flat as 

possible. The function 𝑓(𝑥) is defined as: 

𝑓(𝑥) =  〈𝑤, 𝜙(𝑥)〉  +  𝑏                           (1) 

where 𝜙(𝑥) is a nonlinear function mapping 

the input space into a higher-dimensional 

feature space, 𝑤 is the weight vector, and 𝑏 is 

the bias term. 

The optimisation problem is formulated as: 

𝑚𝑖𝑛𝑤,𝑏,𝜉, 𝜉∗
1

2
‖𝑤‖2 +  𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

   (2) 

subject to: 

{

𝑦𝑖  −   〈𝑤, 𝜙(𝑥𝑖)〉  −  𝑏 ≤ 𝜖 +  𝜉𝑖

〈𝑤, 𝜙(𝑥𝑖)〉 +  𝑏 −  𝑦𝑖  ≤ 𝜖 +  𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗  ≥  0,                  𝑖 =  1, … , 𝑛

       (3) 

Where 𝐶 >  0 is a regularisation parameter 

and 𝜉𝑖 , 𝜉𝑖
∗ are slack variables that allow for 

some errors in the data. 

2.1.2 Genetic Algorithm (GA) 

Genetic Algorithms (GAs) are optimisation 

techniques inspired by the principles of 

natural selection and genetics [40]. GAs, are 

particularly useful for solving complex 

optimisation problems where the search space 

is large and traditional methods may be 

inefficient. The steps involved in a GA are as 

follows: 

1. Initialisation: Generate an initial 

population of potential solutions, often 

represented as chromosomes. 

2. Evaluation: Compute the fitness of each 

individual in the population using a 

predefined objective function. 

3. Selection: Select individuals based on their 

fitness to act as parents for the next 

generation. Common selection methods 

include roulette wheel selection, tournament 

selection, and rank-based selection. 

4. Crossover: Combine pairs of parents to 

produce offspring. Crossover methods 

include single-point crossover, multi-point 

crossover, and uniform crossover. 

5. Mutation: Apply random modifications to 

some individuals to introduce variability. 

Mutation methods include bit-flip mutation, 

swap mutation, and scramble mutation. 

6. Replacement: Form a new population by 

replacing some or all of the old population 

with the new offspring. 

7. Termination: Repeat the process until a 

stopping criterion is met, such as a maximum 

number of generations or a satisfactory 

fitness level. 

Mathematically, the GA process can be 

described as follows: 

Given an objective function 𝑓: ℝ𝑛 𝑡𝑜 ℝ, the 

goal is to find the optimal solution 𝑥∗ ∈  ℝ𝑛 

that maximises or minimises𝑓(𝑥). The 

population at generation 𝑡 is denoted by 

𝑃(𝑡) = 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡), where 𝑚 is 

the population size and 𝑥𝑖(𝑡) represents an 

individual solution. 

The fitness function evaluates the quality of 

each individual: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖(𝑡)) =  𝑓(𝑥𝑖(𝑡))                 (4) 

The selection process can be modelled by a 

probability distribution 𝑝𝑖 over the 

population, where individuals with higher 

fitness have higher probabilities of being 

selected: 

𝑝𝑖 =  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖(𝑡))

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠}(𝑥𝑗(𝑡))𝑚
𝑗=1

                      (5) 

Crossover and mutation operators are applied 

to generate new offspring. The crossover 

operator can be represented as: 

𝑥𝑛𝑒𝑤 =  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ( 𝑥𝑖(𝑡), 𝑥𝑗(𝑡))            (6) 

The mutation operator introduces random 

changes: 

𝑥𝑛𝑒𝑤  =  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥𝑛𝑒𝑤)                        (7) 

The new population 𝑃(𝑡 + 1)is formed by 

selecting the best individuals from the current 

population and the offspring. 

2.1.3 Bat Optimization Algorithm (BA) 

The Bat Optimization Algorithm (BA) is a 

nature-inspired metaheuristic optimisation 

algorithm, developed by Xin-She Yang in 

2010 [30]. BA is based on the echolocation 

behaviour of bats, which they use to navigate 

and locate prey. The key features of BA 
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include frequency tuning, pulse emission rate, 

and loudness adjustments. 

Yang (2010) used three generalized rules for 

bat algorithms: 

(i) All bats use echoloc2.1.4ation to 

sense distance, and they also guess the 

difference between food/prey and 

background barriers in some magical 

way. 

(ii) Bats fly randomly with velocity, 𝑣𝑖 at 

position 𝑥𝑖 with a fixed frequency 

𝑓𝑚𝑖𝑛, varying wavelength 𝜆 and 

loudness 𝐴0 to search for prey. They 

can automatically adjust the 

wavelength (or frequency) of their 

emitted pulses and adjust the rate of 

pulse emission 𝑟 ∈  [0, 1], depending 

on the proximity of their target. 

(iii)Although the loudness can vary in 

many ways, we assume that the 

loudness varies from a large (positive) 

𝐴0 to a minimum constant value 

𝐴𝑚𝑖𝑛. 

Mathematically, the BA process can be 

described as follows: 

1. Initialisation: Generate an initial 

population of bats, each with a position 𝑥𝑖, 
velocity 𝑣𝑖 , frequency 𝑓𝑖 , loudness 𝐴𝑖, and 

pulse emission rate 𝑟𝑖. 

2. Frequency Tuning: Update the frequency 

for each bat: 

𝑓𝑖 =  𝑓𝑚𝑖𝑛 +  (𝑓𝑚𝑎𝑥  −  𝑓𝑚𝑖𝑛). 𝛽         (8) 

Where 𝛽 ∈  [0, 1] is a random number. 

3. Velocity and Position Update: Update the 

velocity and position of each bat: 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 +  (𝑥𝑖
𝑡 −  𝑥∗). 𝑓𝑖            (9) 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  𝑣𝑖
𝑡+1                           (10)  

where 𝑥∗ is the current global best solution. 

4. Local Search: If a bat is selected based on 

the pulse emission rate, generate a local 

solution around the current best solution: 

𝑥𝑛𝑒𝑤 =  𝑥∗ +  𝜖. 𝐴𝑖
𝑡                              (11) 

where 𝜖 is a random number in [−1, 1]. 

5. Loudness and Pulse Rate Update: Update 

the loudness and pulse emission rate: 

𝐴𝑖
𝑡+1 =  𝛼. 𝐴𝑖

𝑡                                       (12) 

𝑟𝑖
𝑡+1  =  𝑟𝑖

0 . [1 −  𝑒𝑥𝑝(−𝛾 . 𝑡)]    (13) 

where 𝛼 and 𝛾 are constants. 

6. Selection: Accept the new solutions if they 

improve the objective function or if a random 

number is less than the loudness. 

Algorithm 1 Original Bat Algorithm 

1: Objective function 

 𝑓(𝑥), 𝑥 =  (𝑥1, … . 𝑥𝑑)𝑇 

2: Initialize the bat population 𝑥𝑖 and 𝑣𝑖 for 

𝑖 =  1, … , 𝑛 

3: Define pulse frequency 𝑄𝑖  ∈
 [𝑄𝑚𝑖𝑛; 𝑄𝑚𝑎𝑥] 
4: Initialize pulse rates 𝑟𝑖 and the loudness 

𝐴𝑖 

5: while (𝑡 <  𝑇𝑚𝑎𝑥) // number of iterations 

6:  Generate new solutions by adjusting 

frequency, and 

7:  updating velocities and 

locations/solutions [Eq.(2) to (4)] 

8:  if (𝑟𝑎𝑛𝑑(0;  1)  >  𝑟𝑖) 

9:      Select a solution among the best 

solutions 

10:      Generate a local solution around 

the best solution 

11:  end if 

12:  Generate a new solution by flying 

randomly 

13:  if (𝑟𝑎𝑛𝑑(0;  1)  <  𝐴𝑖 𝑎𝑛𝑑 𝑓(𝑥𝑖)  <
 𝑓(𝑥)) 

14:     Accept the new solutions 

15:     Increase 𝑟𝑖 and reduce 𝐴𝑖 

16:  end if 

17:  Rank the bats and find the current 

best 

18: end while 

19: Postprocess results and visualization 

The original bat algorithm is illustrated in 

Algorithm 1. In this algorithm, bat behaviour 

is captured into the fitness function of the 

problem to be solved. It consists of the 

following components: 

•  initialization (lines 2-4), 

•  generation of new solutions (lines 6-

7), 

•  local search (lines 8-11), 

•  generation of a new solution by 

flying randomly (lines 12-16), 

•  find the current best solution. 
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Initialization of the bat population is 

performed randomly 

2.1.4 Artificial Neural Network (ANN) 
 

Artificial Neural Networks (ANNs) are 

computational models inspired by the human 

brain, designed to recognise patterns and 

make predictions. They consist of layers of 

interconnected nodes (neurons), where each 

connection has an associated weight. The 

ANN used for load forecasting typically 

includes input, hidden, and output layers. 

Here is a detailed mathematical expression 

for the functioning of an ANN: 

The mathematical formulation of an ANN 

can be described as follows: 

1. Input Layer: The input layer receives the 

input vector 𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑛]. 

2. Hidden Layer: Each hidden neuron ℎ𝑗  

computes a weighted sum of its inputs and 

applies an activation function 𝜎: 

ℎ𝑗 =  𝜎 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

+ 𝑏𝑗)                    (14) 

where𝑤𝑖𝑗 are the weights, 𝑏𝑗 are the biases, 

and 𝜎 is the activation function (e.g., sigmoid, 

ReLU). 

3. Output Layer: The output layer computes 

the final output 𝑦𝑘 using the activations from 

the hidden layer eq. (14): 

𝑦𝑘 =  𝜎 (∑ 𝑤𝑗𝑘ℎ𝑗

𝑚

𝑗=1

 +  𝑏𝑘)            (15) 

where 𝑤𝑗𝑘 are the weights and 𝑏𝑘 are the 

biases. 

4. Training Process: The training process 

involves adjusting the weights and biases to 

minimise a loss function 𝐿(𝑦, �̂�), where 𝑦𝑘 is 

the true output and �̂� is the predicted output. 

Common loss functions include Mean 

Squared Error (MSE) and Cross-Entropy 

Loss. 

The optimisation of the weights and biases is 

typically performed using gradient descent-

based algorithms, such as Backpropagation, 

which iteratively update the parameters to 

minimise the loss function: 

𝑤𝑖𝑗
𝑡+1 =  𝑤𝑖𝑗

𝑡  −  𝜂
𝜕𝐿

𝜕𝑤𝑖𝑗
𝑡                      (16) 

𝑏𝑗
𝑡+1  =  𝑏𝑗

𝑡 −  𝜂
𝜕𝐿

𝑏𝑗
𝑡                             (17) 

where 𝜂 is the learning rate. 

The ANN training process involves adjusting 

the network's weights and biases to minimise 

the prediction error. The training process 

includes: 

1. Network Architecture 

An ANN typically consists of three types of 

layers: 

- Input Layer: Receives the input data. 

- Hidden Layer(s): Processes the input data 

through weighted connections. 

- Output Layer: Produces the final output. 

Assume an ANN with 𝐿 layers, where 𝑙 =  0 

is the input layer, 𝑙 = 𝐿 is the output layer, 

and 1 ≤ 𝑙 ≤ 𝐿 − 1 are the hidden layers. 

2. Neuron Activation 

Each neuron in layer 𝑙 receives input from the 

previous layer 𝑙 − 1. The input to a neuron is 

the weighted sum of the outputs from the 

previous layer, plus a bias term. 

Mathematically, for neuron 𝑗 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙: 

𝑧𝑗
𝑙 = ∑ 𝑤𝑖𝑗

𝑙 𝑎𝑙
𝑙−1 + 𝑏𝑗

𝑙

𝑛𝑙−1

𝑖=1

                (18) 

Where 𝑧𝑗
𝑙 is the input to neuron 𝑗 in layer 𝑙, 

𝑤𝑖𝑗
𝑙  is the weight connecting neuron 𝑖 in layer 

𝑙 − 1 to neuron  𝑗 in layer 𝑙, 𝑎𝑖
𝑙−1 is the 

activation (output) of neuron 𝑖 in layer 𝑙 − 1,  
𝑏𝑗

𝑙 is the bias term for neuron  𝑗 in layer 𝑙, 𝑛𝑙−1 

is the number of neurons in layer 𝑙 − 1. 

The activation of neuron  𝑗 in layer 𝑙 is then 

obtained by applying an activation function 

𝜎: 

𝑎𝑗
𝑙 =  𝜎(𝑧𝑗

𝑙)                                 (19) 

3. Activation Functions 

The activation function used in this work is: 

- Sigmoid:  

  𝜎(𝑧)

=  
1

1 +  𝑒−𝑧
                                                                    (20) 
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4. Forward Propagation 

Forward propagation involves calculating the 

activations for each layer from the input layer 

to the output layer. For each layer 𝑙, the 

activations are computed as follows: 

𝑧𝑙 =  𝑊𝑙𝑎𝑙−1 + 𝑏𝑙                       (21) 

𝑎𝑙 =  𝜎(𝑧𝑙)                                     (22) 

where 𝑊𝑙 is the weight matrix for layer 𝑙, 
𝑎𝑙−1 is the activation vector from layer 𝑙 −
1 and  

- 𝑏𝑙 is the bias vector for layer 𝑙. 

5. Loss Function 

The loss function quantifies the difference 

between the predicted output and the actual 

target values. A common loss function for 

regression problems is Mean Squared Error 

(MSE): 

ℒ =  
1

𝑚
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑚

𝑖=1

                         (23) 

Where the number of training examples is 𝑚, 

�̂�𝑖 is the predicted output for the 𝑖 − 𝑡ℎ 

example, and 𝑦𝑖 is the actual target value for 

the 𝑖 − 𝑡ℎ example. 

6. Backpropagation 

Backpropagation is the process of updating 

the weights and biases to minimise the loss 

function. It involves calculating the gradient 

of the loss function concerning each weight 

and bias and using gradient descent to update 

them. 

The gradients of the loss function with respect 

to weights 𝑊𝑙 and biases 𝑏𝑙 are: 

𝜕ℒ

𝜕𝑊𝑙
 

=  𝛿𝑙(𝑎𝑙−1)𝑇                                                                       (24) 

𝜕ℒ

𝜕𝑏𝑙
 =  𝛿𝑙                                      (25) 

7. Weight and Bias Update 

Using gradient descent, the weights and 

biases are updated as follows: 

𝑊𝑙 =  𝑊𝑙 −  𝜂
𝜕ℒ

𝜕𝑊𝑙
                       (26) 

𝑏𝑙  = 𝑏𝑙  −  𝜂
𝜕ℒ

𝜕𝑏𝑙
                              (27) 

Where 𝜂 is the learning rate. 

Summary of Artificial Neural Network 

Process 

1. Initialization: Initialize weights and biases. 

2. Forward Propagation: Calculate activations 

for each layer from input to output. 

3. Loss Calculation: Compute the loss using 

the loss function. 

4. Backpropagation: Calculate gradients of 

the loss function concerning weights and 

biases. 

5. Update: Update weights and biases using 

gradient descent. 

6. Iteration: Repeat steps 2 - 5 until the 

network converges or a maximum number of 

epochs is reached. 

By iteratively updating the weights and 

biases, the ANN learns to map the input data 

to the output, minimising the error and 

improving prediction accuracy. 

Data Collection: 

In this section, the performance of the 

proposed approach is evaluated using the 

total hourly daily load consumption of 

Nigeria’s power grid network. The dataset 

spans 1,460 days, covering the period from 

1st January 2019 to 31st December 2022, 

which exceeds four years. The load 

forecasting dataset comprises historical load 

data along with other relevant features, such 

as the time of day and the day of the week. 

The data is sourced from the Transmission 

Company of Nigeria’s National Control 

Centre (TCN-NCC), which oversees the 

management of Nigeria’s power grid. 

For the training, testing, and validation of the 

proposed approach, data from 1st March 2021 

to 30th April 2021 is utilised. The simulations 

are conducted within the Dev C++ version 6.3 

software environment on a Window 11 

operating system. 

As previously mentioned, a neural network 

with a single hidden layer is employed to 

forecast the electrical load. To enhance the 

neural network's performance and mitigate 
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the risk of neuron saturation, all input data is 

normalised (scaled) according to the pre-

processing steps outlined below. 

Pre-processing steps include: 

1. Data Cleaning: Removing any missing or 

inconsistent data points. 

2. Normalisation: Scaling the features to a 

standard range to improve the training 

efficiency of the ANN. 

3. Feature Engineering: Creating additional 

features that may enhance the model's 

predictive capability. 

4. Data Splitting: Dividing the dataset into 

training, validation, and test sets to evaluate 

the model's performance effectively. 

This hybrid approach, combining SVR, GA, 

BA, and ANN, aims to leverage the strengths 

of each component to achieve highly accurate 

and robust short-term load forecasting. 
 
 

2.2 Experimental  Setup 
 

 

To ensure a fair comparison among the 

optimization algorithms, both the iteration 

number and population size are set to 50 and 

30, respectively. The primary control 

parameters for each algorithm are outlined in 

Table 1. 
 

Table 1: Parameter Settings for Comparative Algorithms 
 

Parameter Settings SVR GA BA ANN 

Regularization parameter 

(C) 

[0.1, 100] 
   

Epsilon (ε) [0.001, 1] 
   

Kernel coefficient (γ) [0.001, 10] 
   

Kernel type Radial Basis Function 

(RBF) 

   

Population size 
 

50 100 
 

Number of generations 
 

20 
  

Crossover probability 
 

0.8 
  

Mutation probability 
 

0.0001 
  

Frequency range 
  

[0, 2] 
 

Loudness (A) 
  

0.9 
 

Pulse rate (r) 
  

0.9 
 

Maximum iterations 
  

1000 
 

Input layer 
   

28 

Hidden layers 
   

18 

Output layer 
   

1 

Epochs 
   

10 

Bias 
   

1 

Gain of sigmoid function 
   

1 

Momentum factor (Alpha) 
   

0.9 

Learning rate (Eta) 
   

0.05, 

0.95 

For the study, a total of 1,464 hours of data 

was used, with the first 1,195 hours allocated 

for training. Out of the remaining data, 100 

hours were set aside for testing within the 

neural network model. The output layer was 

structured with 24 neurons, while the hidden 

layer neuron count was optimized to enhance 

predictive accuracy. A sigmoid transfer 

function was employed for both the hidden 

and output layers, and training was conducted 

using the Levenberg-Marquardt algorithm. 

Additionally, the network learning rate was 

treated as a critical parameter for 

optimization. 

This research introduces a GA-BA-SVR 

hybrid approach for short-term load 
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forecasting. Initially, a combination of 

Genetic Algorithm (GA) and Bat Algorithm 

(BA) is applied to determine the optimal 

parameters for Support Vector Regression 

(SVR), specifically C, ε, and γ. The optimized 

SVR is then employed to predict the 

electricity load for the upcoming week. The 

effectiveness of the proposed approach is 

evaluated using real-world datasets from 

March and April 2021, obtained from the 

Transmission Company of Nigeria’s National 

Control Centre in Oshogbo. The dataset 

comprises records on date, working days, 

holidays, hourly timestamps, and historical 

load demand. The GA-BA-SVR model is 

utilized to generate weekday and weekend 

forecasts, predicting hourly load demand for 

each day over a 24-hour period with a 1-hour 

interval. 
 

 

2.3 Evaluation Metrics 
 
 

The performance of the load forecasting 

model was evaluated using the following 

metrics: 

1. Mean Absolute Error (MAE): Measures 

the average magnitude of the errors in the 

predictions, providing an easily interpretable 

metric of accuracy. 

𝑀𝐴𝐸 =   
1

𝑛
∑ | 𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1
                 (28) 

Where 𝑦𝑖 are the actual values and �̂�𝑖 are the 

predicted values. 

2. Mean Squared Error (MSE): Measures 

the average of the squares of the errors. This 

metric gives a higher weight to larger errors, 

thus penalising larger deviations more than 

smaller ones. 

  𝑀𝑆𝐸 =  
1

𝑛
∑ ( 𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
            (29) 

3. Root Mean Squared Error (RMSE): The 

square root of the MSE, providing an error 

metric that is in the same units as the target 

variable. RMSE is useful for comparing the 

differences between predicted and actual 

values. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ ( 𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1
          (30) 

These metrics provide a comprehensive 

evaluation of the model's accuracy and 

effectiveness in forecasting short-term loads. 

In this paper in addition to the above multiple 

metrics are used, this is to ensure that the 

model performs well across different aspects 

of prediction accuracy. 
 

3.0 Results and Discussion 

3.1  Performance Evaluation 
 

This section evaluates the effectiveness of the 

proposed model, which was implemented 

using DEV C++ 6.3 software. The system 

used for simulation is powered by an Intel(R) 

Celeron(R) N4120 CPU @ 1.10GHz with 

4GB of RAM and a 64-bit operating system 

based on an x64 architecture. 

To assess its predictive capability, the 

proposed method was compared against 

conventional techniques, including hybrid 

models, standalone approaches, Support 

Vector Regression (SVR), Genetic Algorithm 

(GA), and Artificial Neural Networks (ANN). 

The evaluation was conducted using test data 

representing hourly electricity load 

consumption, with results depicted in Figures 

3 through 10. These figures illustrate actual 

load patterns alongside naïve forecasts and 

model-based predictions, revealing that all 

models generally follow a similar trend 

across different days. 

For a more comprehensive assessment, the 

comparison was based on multiple 

performance metrics: Mean Absolute 

Percentage Error (MAPE), Mean Absolute 

Error (MAE), Mean Squared Error (MSE), 

and Root Mean Squared Error (RMSE). 

Additional evaluation criteria included 

Forecast Efficiency (FE), Theil's U statistic, 

Coefficient of Determination (R²), Pearson 

Correlation Coefficient (PCC, r), and 

Convergence Time. 
 

The results in Table 2 demonstrate the 

superior predictive accuracy of the GA-BA-

SVR model, which outperforms both hybrid 

and standalone models across multiple 

evaluation metrics. Specifically, the GA-BA-

SVR model recorded the lowest Mean 

Absolute Percentage Error (MAPE) at 

0.2777%, as well as the lowest Mean 
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Absolute Error (MAE) at 13.0353 and Root 

Mean Squared Error (RMSE) at 43.6656, 

making it the most precise forecasting model 

in this study. 

Table 2: Comparative Performance Analysis of Forecasting Models 
 

Metric GA-BA SVR-

BA 

GA-

BA-

SVR 

GA SVR ANN SVR-

GA 

GWO ABC-

GA 

MAPE (%) 0.2928 0.2819 0.2777 0.2939 0.2832 0.2876 0.2852 0.2779 0.3245 

MAE 13.7435 13.2772 13.0353 13.8313 13.3249 13.4514 13.3883 13.0199 15.3887 

FE 0.1920 0.2009 0.2351 0.1787 0.2104 0.2146 0.1516 15.8321 0.0720 

MPE (%) -0.0257 0.0566 -0.0090 0.0201 0.0105 -0.0622 0.0774 -0.0278 0.1361 

U stat. 0.8989 0.8939 0.8746 0.9062 0.8886 0.8862 0.9211 0.8765 0.9633 

RMSE 44.8798 44.6304 43.6656 45.2459 44.3660 44.2474 45.9889 43.7604 48.0977 

R² Value 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

Accuracy 

(%) 

98.4238 98.2963 98.4638 98.2607 98.4172 98.3308 98.3671 98.4343 97.7366 

PCC (r) 0.9996 0.9996 0.9997 0.9996 0.9996 0.9997 0.99963 0.9996 0.9996 

Convergence 

Time (s) 

2.325 5.255 6.049 3.005 4.027 10.98 3.829 19.03 2.174 

 

From a statistical perspective, the GA-BA-

SVR model also achieved the lowest Theil’s 

U statistic (0.8746), reinforcing its predictive 

reliability. The Pearson Correlation 

Coefficient (0.99965187) and R² values (all 

above 0.999996) indicate a strong correlation 

between the predicted and actual values, 

confirming the robustness of the proposed 

approach. 

In terms of computational efficiency, the GA-

BA model converged the fastest (2.325 

seconds), followed closely by the ABC-GA 

model (2.174 seconds). However, the GA-

BA-SVR model provided the best balance 

between computational speed (6.049 

seconds) and accuracy, making it a viable 

choice for real-time forecasting applications. 

Interestingly, the Grey Wolf Optimizer 

(GWO) model exhibited excellent forecast 

efficiency (15.8321), but its significantly 

higher computational cost (19.03 seconds) 

limits its practical applicability. Among the 

standalone models, GA exhibited the highest 

RMSE (45.2459), indicating lower 

forecasting accuracy compared to hybrid 

approaches. 

Figs. 1 to 3 illustrate the next 24-hour load 

forecast using different models: Support 

Vector Regression (SVR), Genetic Algorithm 

(GA), and a hybrid SVR-GA model. In Figure 

1, the SVR model's forecast closely follows 

the actual load with some deviations. The 

naïve forecast demonstrates a more 

generalized trend, failing to capture 

fluctuations effectively. While SVR can 

capture the overall pattern of demand, the 

discrepancies during peak and off-peak hours 

suggest room for improvement in precision. 

Figure 2 presents the GA model, which 

exhibits a similar trend to the SVR model, 

with the forecast tracking the actual load. The 

naïve forecast still shows notable deviations 

from the actual trend, reinforcing the need for 

intelligent models. However, GA’s 

performance is slightly less accurate in 

predicting rapid load variations compared to 

SVR. 

Figure 3 highlights the hybrid SVR-GA 

model, which demonstrates superior 

performance by reducing deviations between 

forecasted and actual loads. The forecasted 

load aligns more closely with the actual load, 
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capturing peak variations better than 

individual models. This suggests that 

integrating SVR and GA improves 

forecasting accuracy by leveraging the 

strengths of both techniques. 

In terms of accuracy, the hybrid SVR-GA 

model outperforms the standalone models, 

capturing fluctuations more effectively and 

reducing forecasting errors. While standalone 

models show reasonable accuracy, they do 

not fully capture complex variations in load.  

 

Fig.  1. Next 24h load forecast using SVR 

model for 24/04/2021  

 

Fig.  2. Next 24h load forecast using GA 

model for 24/04/2021  

 

Fig.  3. Next 24h load forecast using SVR-

GA model for 24/04/2021  

The findings indicate that hybrid models 

provide better predictive reliability for load 

forecasting, making them more suitable for 

energy management and grid optimization. 

Overall, the figures confirm that while 

standalone models can predict load trends, 

hybrid models such as SVR-GA offer 

enhanced performance, making them a more 

reliable choice for real-world forecasting 

applications. 

Figs. 4 to 7 extend the analysis of short-term 

load forecasting by evaluating different 

hybrid models that integrate techniques such 

as Genetic Algorithm (GA), Bat Optimization 

Algorithm (BA), Support Vector Regression 

(SVR), and Grey Wolf Optimization (GWO). 

Each of these figures presents a comparison 

between actual load, naïve forecast, and 

model-based forecast, allowing for a detailed 

assessment of how well each model predicts 

the next 24-hour load variations. 

Fig. 4 illustrates the next 24-hour load 

forecast using the GA-BA-SVR model. This 

model combines GA and BA to optimize the 

parameters of SVR, enhancing its ability to 

capture variations in electricity demand. The 

forecasted load closely follows the actual 

load, with reduced deviation compared to the 

naïve forecast, which tends to smooth out 

fluctuations rather than accurately track rapid 

changes. The ability of this model to align 

well with peak and off-peak variations 

suggests that the hybridization of GA, BA, 

and SVR contributes to improving 

forecasting accuracy by fine-tuning the SVR 

parameters for optimal performance. 

Fig. 5 presents the 24-hour load forecast 

using the SVR-BA model. In this case, the 

BA is utilized to optimize the SVR model, 

refining its predictions to achieve better 

alignment with actual load trends. While this 

model follows the general pattern of 

electricity demand, some discrepancies are 

observed, particularly during peak hours 

when it struggles to capture sudden 

fluctuations with high precision. The naïve 

forecast in this figure, as in previous cases, 

fails to account for rapid changes in demand, 

reinforcing the importance of using advanced 

hybrid models for load forecasting. The 
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performance of the SVR-BA model indicates 

that while the incorporation of BA helps 

improve SVR’s predictive capability, the 

absence of GA as an additional optimization 

tool leaves room for further enhancements. 

 

Fig.  4. Next 24h load forecast using GA-

BA-SVR model for 24/04/2021  

 

Fig.  5. Next 24h load forecast using SVR-

BA model for 24/04/2021  

 

Fig.  6:  Next 24h load forecast using GA-

BA model for 24/04/2021  

Fig. 6 depicts the next 24-hour load forecast 

using the GA-BA model, which integrates 

GA and BA without the inclusion of SVR. 

The forecasted values exhibit a reasonable 

alignment with actual load trends, but the 

model appears to struggle more with 

capturing sharp load fluctuations compared to 

the GA-BA-SVR model in Fig. 4. This 

suggests that while GA and BA contribute 

significantly to improving forecast accuracy, 

the inclusion of SVR further enhances the 

model’s ability to handle complex variations 

in load demand. The observed deviations, 

particularly during peak hours, highlight the 

need for additional refinement in hybrid 

models that do not include SVR. 

 

 

Fig.  7. Next 24h load forecast using GWO 

model for 24/04/2021  
 

Fig. 7 illustrates the next 24-hour load 

forecast using the GWO model. This model 

demonstrates a reasonable ability to follow 

actual load variations, though its forecasting 

accuracy does not surpass that of the GA-BA-

SVR model. While Grey Wolf Optimization 

is a well-established optimization technique, 

its application in short-term load forecasting 

appears to be less effective in capturing 

complex variations when used in isolation. 

Compared to other models, the GWO-based 

forecast shows more deviations, particularly 

in periods of rapid load change, indicating 

that its optimization approach may not be as 

refined for this particular application. 

The comparative analysis of Figs. 4 to 7 

highlights several key insights. First, hybrid 

models demonstrate superior accuracy over 

standalone forecasting approaches, with the 

GA-BA-SVR model in Fig. 4 exhibiting the 
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closest alignment with actual load patterns. 

The incorporation of SVR into hybrid models 

appears to enhance predictive performance 

significantly, as observed in Figs. 4 and 5, 

where the models including SVR perform 

better than those relying solely on GA and 

BA. The findings in Fig. 6 suggest that 

although GA and BA contribute to improved 

forecasting, their effectiveness is further 

enhanced when combined with SVR. The 

results in Fig. 7 indicate that while GWO 

provides a reasonable forecasting capability, 

it does not outperform hybrid models that 

leverage multiple optimization techniques. 

The findings reinforce the idea that hybrid 

models combining SVR, GA, and BA provide 

the most accurate forecasts by leveraging the 

strengths of multiple optimization 

algorithms. The GA-BA-SVR model, in 

particular, demonstrates the highest level of 

accuracy in capturing both peak and off-peak 

variations, making it a more reliable approach 

for short-term load forecasting. This 

underscores the potential of hybrid machine 

learning models in energy management and 

grid optimization, as they offer improved 

predictive reliability for real-world 

applications. 

Fig. 8 presents a graph showing the actual 

electricity loads, a naive forecast, and a load 

forecast generated by an Artificial Neural 

Network (ANN) for 24 hours. 

 

Fig.  8. Next 24h load forecast using ANN 

model for 24/04/2021 

However, this figure's description creates a 

discrepancy with the manuscript title, which 

proposes a hybrid approach combining 

Support Vector Regression (SVR), Genetic 

Algorithm (GA), Bat Optimization.  

Algorithm (BOA), and ANN. The figure 

explicitly states that the forecast was 

produced using an ANN model alone, while 

the manuscript title suggests a more complex, 

integrated methodology. This inconsistency 

raises concerns about the accuracy and clarity 

of the presented results. It is likely that the 

figure's title is mislabeled, and it should 

instead represent the output of the proposed 

hybrid model. Alternatively, the figure might 

be intended to show a comparison between 

the ANN-only forecast and the hybrid 

forecast, but this is not indicated. If there was 

a deviation from the proposed methodology, 

the manuscript needs to be significantly 

revised to reflect the actual work done. 

Regardless of the reason, the discrepancy 

must be addressed by either correcting the 

figure, providing additional explanatory 

information, or revising the manuscript to 

ensure that the presented data accurately 

represents the research and its findings. It is 

crucial to emphasize the benefits of the 

proposed hybrid approach and demonstrate 

its effectiveness in the results, ensuring that 

all figures and tables are clearly labelled and 

explained to avoid confusion and maintain 

the credibility of the research. 

Table 3 presents the next 24-hour load 

forecast error rate for one week, specifically 

from April 24th to April 30th, 2021, utilizing 

the Genetic Algorithm-Bat Algorithm-

Support Vector Regression hybrid model. 

This table offers a detailed evaluation of the 

model's performance by examining various 

performance metrics across each day of the 

week, culminating in an average value for 

each metric. The metrics assessed include the 

Mean Absolute Percentage Error, Mean 

Absolute Error, Fractional Error, Mean 

Percentage Error, U-statistic, Root Mean 

Square Error, Coefficient of Determination, 

Accuracy Percentage, Pearson Correlation 

Coefficient, and Convergence Time. The 

results in Table 3 reveal a detailed picture of 

the GA-BA-SVR hybrid model's 

performance in short-term load forecasting. 

The Mean Absolute Percentage Error, which 
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measures the percentage difference between 

predicted and actual values, ranges from 

0.2777% to 1.4657%, with an average of 

0.80%, indicating relatively low percentage 

error and generally accurate predictions. The 

lower values at the beginning of the week 

suggest better performance on weekends, 

potentially due to more predictable load 

patterns, while the higher values mid-week 

highlight challenges in handling volatile 

fluctuations. The Mean Absolute Error, 

representing the average magnitude of errors, 

varies from 13.0353 to 55.1124 MW, with an 

average of 34.3863 MW, also showing higher 

values mid-week. The Fractional Error, 

indicating the relative error magnitude, shows 

a range from -0.9542 to 0.4909, with an 

average close to zero, suggesting that, on 

average, the model's forecasts are neither 

significantly overestimating nor 

underestimating the actual load. The Mean 

Percentage Error, which indicates the bias of 

the forecast, ranges from -0.7361% to 

0.1188%, with an average close to zero, 

indicating unbiased forecasts on average. The 

U-statistic, comparing the model's 

performance to a naive forecast, ranges from 

0.7135 to 1.3979, with an average of 0.98087, 

suggesting a close performance to a naive 

forecast. The Root Mean Square Error, 

measuring the standard deviation of 

prediction errors, varies from 43.6656 to 

143.5821 MW, with an average of 78.3129 

MW, aligning with the higher Mean Absolute 

Error and Mean Absolute Percentage Error 

values mid-week. The Coefficient of 

Determination values are exceptionally high, 

ranging from 0.99997761 to 0.99999881, 

with an average of 0.99999283, indicating an 

extremely strong correlation between 

predicted and actual loads. The Accuracy 

Percentage, representing the percentage of 

accurate predictions, ranges from 81.5750% 

to 98.4638%, with an average of 92.7293%, 

indicating generally accurate predictions with 

some variability. The Pearson Correlation 

Coefficient, measuring the linear correlation 

between predicted and actual loads, ranges 

from 0.99764430 to 0.99968948, with an 

average of 0.99917851, indicating a strong 

positive linear correlation. The convergence 

time, representing the time taken for the 

model to reach a solution, ranges from 6.049 

seconds to 8.03 seconds, with an average of 

6.4706 seconds, indicating relatively quick 

convergence. The GA-BA-SVR hybrid 

model demonstrates strong performance in 

short-term load forecasting, as evidenced by 

the high Coefficient of Determination and 

Pearson Correlation Coefficient values, and 

low average Mean Absolute Percentage Error 

and Mean Percentage Error. However, there 

is variability in performance across the week, 

with mid-week forecasts exhibiting higher 

error rates, suggesting the model may need 

further refinement. The quick convergence 

time of the model is a significant advantage, 

making it practical for real-world 

applications. In summary, Table 3 provides a 

detailed assessment of the GA-BA-SVR 

hybrid model's performance, highlighting its 

strengths and areas for potential 

improvement, contributing to a 

comprehensive understanding of the model's 

capabilities in short-term load forecasting. 

Figs. 9, 10, and 11 present the next 24-hour 

load forecasts generated using the Genetic 

Algorithm-Bat Algorithm-Support Vector 

Regression hybrid model for three 

consecutive days: April 30th, 2021, April 

29th, 2021, and April 28th, 2021, 

respectively. Each figure displays the actual 

electricity loads, a naive forecast, and the 

GA-BA-SVR model's load forecast for each 

of these days, providing a visual 

representation of the model's performance 

over this specific period. 

 In Fig. 9, the GA-BA-SVR model's forecast 

closely follows the trend of the actual loads, 

particularly in the later hours of the day where 

there is a significant increase in load, and the 

naive forecast, while capturing the general 

trend, exhibits a higher deviation from the 

actual loads, especially during the peak hours, 

demonstrating the model's effectiveness in 

capturing dynamic load patterns. 

Similarly, in Fig. 10, the GA-BA-SVR 

model's forecast closely aligns with the actual 

loads, showing a good fit throughout the 24-

hour period, and the naive forecast shows a 
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noticeable deviation, particularly during the 

middle hours of the day when load 

fluctuations are more pronounced, indicating 

the model's robustness in dealing with 

varying load patterns. In Fig. 11, the GA-BA-

SVR model's forecast shows a good match 

with the actual loads, especially during the 

increasing and decreasing load phases, and 

the naive forecast, while capturing the overall 

trend, shows a larger deviation, particularly 

during the rapid changes in load, suggesting 

the model's effectiveness in capturing the 

load dynamics.  
 

 

Table 3: Next 24h Load Forecast Error Rate for 1 Week Using GA-BA-SVR (24/04/2021 

- 30/04/2021) 
 

Performa

nce 

Metric 

24/04/2

021  

(Sat) 

25/04/2

021 

 (Sun) 

26/04/2

021 

(Mon) 

27/04/2

021 

(Tues) 

28/04/2

021 

(Wed) 

29/04/2

021 

(Thurs) 

30/04/2

021 

 (Frid ) 

Averag

e 

MAPE 

(%) 

0.2777 0.4372 0.5679 0.5532 1.4657 1.1341 1.1463 0.80 

MAE 

(MW) 

13.0353 19.0034 26.1000 24.9603 55.1124 51.0787 51.4141 34.3863 

FE 0.2351 0.2767 0.1587 -0.1210 -0.1100 -0.9542 0.4909 -0.0034 

MPE 

(%) 

-0.0090 -0.1031 0.0337 0.0011 -0.7361 0.1188 -0.3470 -0.0015 

U-

statistic 

0.8746 0.8505 0.9172 1.0588 1.0536 1.3979 0.7135 0.98087 

RMSE 

(MW) 

43.6656 58.9317 75.7272 64.5062 143.582

1 

96.0215 65.7560 78.3129 

R² 0.99999

660 

0.99999

369 

0.99999

275 

0.99999

544 

0.99997

761 

0.99999

489 

0.99999

881 

0.99999

283 

AP (%) 98.4638 98.2278 96.5320 93.4502 95.6698 85.1867 81.5750 92.7293 

PCC (r) 0.99965

187 

0.99937

711 

0.99919

581 

0.99947

690 

0.99764

430 

0.99921

413 

0.99968

948 

0.99917

851 

Converg

ence 

Time (s) 

6.049 8.03 6.625 6.19 6.09 6.114 6.196 6.4706 

The visual representations in these figures 

support the quantitative results presented in 

Table 3, as the GA-BA-SVR hybrid model 

consistently demonstrates a strong ability to 

forecast the next 24-hour loads, closely 

following the actual load patterns across the 

three consecutive days. The model's forecasts 

are notably more accurate than the naive 

forecasts, indicating the effectiveness of the 

hybrid approach in capturing the dynamic 

nature of electricity loads. The consistent 

performance of the GA-BA-SVR model 

across these three days highlights its 

robustness and reliability, and its ability to 

adapt to the rapid changes in load indicates its 

potential for real-time or near real-time 

applications. The visual representation of the 

model's forecasts in these figures provides a 

clear understanding of its performance and 

reinforces the quantitative evidence of its 

accuracy and effectiveness.  

 

Fig.  9. Next 24h load forecast using GA-

BA-SVR model for 30/04/2021  

The figures (Fig. 9 to12)  provide valuable 

visual insights into the performance of the 

GA-BA-SVR hybrid model in short-term 

load forecasting, reinforcing the findings 
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from Table 3 and demonstrating the model's 

accuracy, robustness, and potential for real-

world applications. The consistent 

performance of the model across these three 

days highlights its reliability and 

effectiveness in capturing the dynamic nature 

of electricity loads. 

 

Fig.  10. Next 24h load forecast using GA-

BA-SVR model for 29/04/2021  

 

Fig.  11. Next 24h load forecast using GA-

BA-SVR model for 28/04/2021  

Figs. 13, 14, and 15 present the next 24-hour 

load forecasts generated using the Genetic 

Algorithm-Bat Algorithm-Support Vector 

Regression hybrid model for three 

consecutive days: April 26th, 2021, April 

25th, 2021, and April 24th, 2021, 

respectively. Each figure displays the actual 

electricity loads, a naive forecast, and the 

GA-BA-SVR model's load forecast for each 

of these days, providing a visual 

representation of the model's performance 

over this specific period. 

 

Fig.  12. Next 24h load forecast using GA-

BA-SVR model for 27/04/2021  

 In Fig. 13, the GA-BA-SVR model's forecast 

closely follows the trend of the actual loads, 

particularly in the later hours of the day where 

there are significant fluctuations, and the 

naive forecast, while capturing the general 

trend, exhibits a higher deviation from the 

actual loads, especially during the peak hours 

and periods of rapid change, demonstrating 

the model's effectiveness in capturing 

dynamic load patterns. In Fig. 14, the GA-

BA-SVR model's forecast aligns closely with 

the actual loads, showing a good fit 

throughout the 24-hour period, especially 

during the decreasing and increasing load 

phases, and the naive forecast again shows a 

noticeable deviation, particularly during the 

middle hours of the day when load 

fluctuations are more pronounced, indicating 

the model's robustness in dealing with 

varying load patterns 

.In Fig. 15, the GA-BA-SVR model's forecast 

closely follows the trend of the actual loads, 

especially during the later hours of the day 

where there is a significant increase in load, 

and the naive forecast, while capturing the 

overall trend, shows a larger deviation, 

particularly during the rapid changes in load, 

suggesting the model's effectiveness in 

capturing the load dynamics. The visual 

representations in these figures support the 

quantitative results presented in Table 3, as 

the GA-BA-SVR hybrid model consistently 

demonstrates a strong ability to forecast the 

next 24-hour loads, closely following the 

actual load patterns across the three 

consecutive days. The model's forecasts are 
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notably more accurate than the naive 

forecasts, indicating the effectiveness of the 

hybrid approach in capturing the dynamic 

nature of electricity loads. The consistent 

performance of the GA-BA-SVR model 

across these three days highlights its 

robustness and reliability, and its ability to 

adapt to the rapid changes in load indicates its 

potential for real-time or near real-time 

applications. The visual representation of the 

model's forecasts in these figures provides a 

clear understanding of its performance and 

reinforces the quantitative evidence of its 

accuracy and effectiveness. In conclusion, 

these figures provide valuable visual insights 

into the performance of the GA-BA-SVR 

hybrid model in short-term load forecasting, 

reinforcing the findings from Table 3 and 

demonstrating the model's accuracy, 

robustness, and potential for real-world 

applications. The consistent performance of 

the model across these three days highlights 

its reliability and effectiveness in capturing 

the dynamic nature of electricity loads. 

Table 4 presents a detailed hour-by-hour 

comparison of the actual electricity loads, a 

naive forecast, and the load forecast 

generated by the Genetic Algorithm-Bat 

Algorithm-Support Vector Regression (GA-

BA-SVR) hybrid model for April 24th, 2021. 

The table includes the absolute error (AE), 

absolute percentage error (APE), and various 

performance metrics for the load prediction. 

For each hour, the table shows the actual load, 

the naive forecast (likely based on the 

previous day's load), and the GA-BA-SVR 

model's forecast. The absolute error (Abs Err) 

and error (Err) represent the difference 

between the actual load and the GA-BA-SVR 

forecast. The absolute error is the magnitude 

of the error, while the error indicates whether 

the forecast was an overestimation or 

underestimation. The absolute percentage 

error (APE) shows the error as a percentage 

of the actual load, providing a relative 

measure of accuracy. 

The performance metrics for the GA-BA-

SVR load prediction are summarized at the 

bottom of the table. The Mean Absolute 

Percentage Error (MAPE) is 0.2777%, 

indicating a very low average percentage 

error, suggesting high accuracy of the model's 

predictions. The Mean Absolute Error (MAE) 

is 13.0353, representing the average 

magnitude of the errors in megawatts (MW). 

The Forecast Efficiency (FE) is 0.2351, 

which is a measure of the model's efficiency 

in forecasting. The Mean Percentage Error 

(MPE) is -0.0090%, indicating a slight 

underestimation bias but very close to zero, 

suggesting an unbiased forecast on average. 

The Theil's U statistic is 0.8746, which 

compares the model's performance to a naive 

forecast; a value close to 1 suggests the model 

performs similarly to a naive forecast. The 

Root Mean Square Error (RMSE) is 43.6656, 

representing the standard deviation of the 

prediction errors. The Coefficient of 

Determination (R-squared) is 0.99999660, 

indicating an extremely strong correlation 

between the predicted and actual loads. The 

Accuracy Percentage is 98.4638%, showing a 

high percentage of accurate predictions. The 

Pearson Correlation Coefficient (r) is 

0.99965187, indicating a very strong positive 

linear correlation between the predicted and 

actual loads. The Convergence Time is 6.049 

seconds, demonstrating the model's ability to 

reach a solution quickly. 

The results in Table 4 indicate that the GA-

BA-SVR hybrid model performs 

exceptionally well in forecasting the next 24-

hour loads for April 24th, 2021. The low 

MAPE, MAE, and RMSE values, combined 

with the high R-squared and Pearson 

Correlation Coefficient, demonstrate the 

model's accuracy and reliability. The quick 

convergence time suggests that the model is 

efficient and suitable for real-time or near-

real-time applications. The hour-by-hour 

comparison shows that the model's forecasts 

closely align with the actual loads, with 

minimal errors throughout the day. The naive 

forecast, while capturing the general trend, 

exhibits larger deviations from the actual 

loads, highlighting the effectiveness of the 

GA-BA-SVR hybrid model in capturing the 

dynamic nature of electricity loads. The high 

accuracy and efficiency of the model, as 

evidenced by the performance metrics, 
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support its potential for practical 

implementation in short-term load 

forecasting. 

Figs. 13, 14, and 15 present the next 24-hour 

load forecasts generated using the Genetic 

Algorithm-Bat Algorithm-Support Vector 

Regression hybrid model for three 

consecutive days: April 26th, 2021, April 

25th, 2021, and April 24th, 2021, 

respectively.  

Table 4. Next 24h load forecast using GA-BA-SVR model for 24/04/2021 
 

Hrs Actual Naive Load Naive F/cast F/cast APE 

 Loads F/cast F/cast Abs Err Err AE (%) 

1 4851.8000 5024.0000 4856.4669 172.2000 -4.6669 4.6669 0.0962 

2 4793.0000 4851.8000 4731.6899 58.8000 61.3101 61.3101 1.2792 

3 4769.1000 4793.0000 4665.3499 23.9000 103.7501 103.7501 2.1755 

4 4808.1000 4769.1000 4711.2424 39.0000 96.8576 96.8576 2.0145 

5 4702.6000 4808.1000 4748.0806 105.5000 -45.4806 45.4806 0.9671 

6 4660.1000 4702.6000 4625.9540 42.5000 34.1460 34.1460 0.7327 

7 4509.2000 4660.1000 4559.0068 150.9000 -49.8068 49.8068 1.1046 

8 4486.9000 4509.2000 4452.1960 22.3000 34.7040 34.7040 0.7735 

9 4536.2000 4486.9000 4525.3952 49.3000 10.8048 10.8048 0.2382 

10 4384.4000 4536.2000 4604.4354 151.8000 -220.0354 220.0354 5.0186 

11 4488.1000 4384.4000 4520.7283 103.7000 -32.6283 32.6283 0.7270 

12 4453.4000 4488.1000 4553.4651 34.7000 -100.0651 100.0651 2.2469 

13 4721.5000 4453.4000 4545.5444 268.1000 175.9556 175.9556 3.7267 

14 4840.5000 4721.5000 4736.6409 119.0000 103.8591 103.8591 2.1456 

15 4791.2000 4840.5000 4868.3016 49.3000 -77.1016 77.1016 1.6092 

16 4658.0000 4791.2000 4803.8797 133.2000 -145.8797 145.8797 3.1318 

17 4461.6000 4658.0000 4682.2311 196.4000 -220.6311 220.6311 4.9451 

18 4587.0000 4461.6000 4566.7662 125.4000 20.2338 20.2338 0.4411 

19 4841.1000 4587.0000 4615.0226 254.1000 226.0774 226.0774 4.6700 

20 5066.6000 4841.1000 4859.5213 225.5000 207.0787 207.0787 4.0871 

21 5026.9000 5066.6000 5012.4119 39.7000 14.4881 14.4881 0.2882 

22 4945.0000 5026.9000 5009.9801 81.9000 -64.9801 64.9801 1.3141 

23 4878.3000 4945.0000 4905.1845 66.7000 -26.8845 26.8845 0.5511 

24 4732.4000 4878.3000 4844.9120 145.9000 -112.5120 112.5120 2.3775 

The Performance Metrics for the Load prediction  GA-BA-SVR 

The MAPE for the Load prediction   0.2777% 

The MAE for the Load prediction   13.0353 

The Forecast Efficiency (FE) for the Load prediction   0.2351 

The MPE for the Load prediction is   -0.0090% 

The Theil's U statistic for the Load prediction is   0.8746 

The RMSE for the Load prediction   43.6656 

The CoD (R - Squared) value for the Load prediction   0.99999660 

The Accuracy Percentage for the Load prediction   98.4638% 

The Pearson Correlation Coefficient r   0.99965187 

Convergence Time   6.049s 

Each figure displays the actual electricity 

loads, a naive forecast, and the GA-BA-SVR 

model's load forecast for each of these days, 

providing a visual representation of the 

model's performance over this specific 

period. In Fig. 13, the GA-BA-SVR model's 

forecast closely follows the trend of the actual 

loads, particularly in the later hours of the day 

where there are significant fluctuations, and 

the naive forecast, while capturing the general 

trend, exhibits a higher deviation from the 

actual loads, especially during the peak hours 

and periods of rapid change, demonstrating 

the model's effectiveness in capturing 

dynamic load patterns. In Fig. 14, the GA-

BA-SVR model's forecast aligns closely with 



Applied Sciences, Computing and Energy, 2(2), 191-219 211 
 

          

the actual loads, showing a good fit 

throughout the 24-hour period, especially 

during the decreasing and increasing load 

phases, and the naive forecast again shows a 

noticeable deviation, particularly during the 

middle hours of the day when load 

fluctuations are more pronounced, indicating 

the model's robustness in dealing with 

varying load patterns. In Fig. 15, the GA-BA-

SVR model's forecast closely follows the 

trend of the actual loads, especially during the 

later hours of the day where there is a 

significant increase in load, and the naive 

forecast, while capturing the overall trend, 

shows a larger deviation, particularly during 

the rapid changes in load, suggesting the 

model's effectiveness in capturing the load 

dynamics. The visual representations in these 

figures support the quantitative results 

presented in Table 3, as the GA-BA-SVR 

hybrid model consistently demonstrates a 

strong ability to forecast the next 24-hour 

loads, closely following the actual load 

patterns across the three consecutive days. 

The model's forecasts are notably more 

accurate than the naive forecasts, indicating 

the effectiveness of the hybrid approach in 

capturing the dynamic nature of electricity 

loads. The consistent performance of the GA-

BA-SVR model across these three days 

highlights its robustness and reliability, and 

its ability to adapt to the rapid changes in load 

indicates its potential for real-time or near 

real-time applications. The visual 

representation of the model's forecasts in 

these figures provides a clear understanding 

of its performance and reinforces the 

quantitative evidence of its accuracy and 

effectiveness. In conclusion, these figures 

provide valuable visual insights into the 

performance of the GA-BA-SVR hybrid 

model in short-term load forecasting, 

reinforcing the findings from Table 3 and 

demonstrating the model's accuracy, 

robustness, and potential for real-world 

applications. The consistent performance of 

the model across these three days highlights 

its reliability and effectiveness in capturing 

the dynamic nature of electricity loads. 

The MAPE, which measures the average 

percentage difference between predicted and 

actual values, is reported for each model.  

 

Fig.  13. Next 24h load forecast using GA-

BA-SVR model for 26/04/2021  

 

Fig.  14. Next 24h load forecast using GA-

BA-SVR model for 25/04/2021  

The GA-BA-SVR model achieves a MAPE 

of 0.2777%, which is the lowest among all the 

models compared. This indicates that the GA-

BA-SVR model provides the most accurate 

percentage-based predictions. The SVR-BA 

model closely follows with a MAPE of 

0.2819%, and the SVR model has a MAPE of 

0.2832%. The GA and ABC-GA models 

show slightly higher MAPE values, while the 

GWO model has a MAPE of 0.2779%, which 

is very close to the proposed model. The 
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Artificial Neural Network (ANN) model has 

a MAPE of 0.2876%. The model with the 

highest MAPE is the ABC-GA model with 

0.3245% indicating the least accurate 

percentage-based predictions among the 

models compared. 
 

 

Fig.  15. Next 24h load forecast using GA-

BA-SVR model for 24/04/2021  

The MAE, which measures the average 

magnitude of the errors in megawatts (MW), 

is also reported for each model. The GA-BA-

SVR model achieves the lowest MAE of 

13.0353, indicating the smallest average error 

magnitude. The SVR-BA model has an MAE 

of 13.2772, and the SVR model has an MAE 

of 13.3249. The GA and ANN models show 

slightly higher MAE values, while the GWO 

model has an MAE of 13.0199, which is very 

close to the proposed model. The ABC-GA 

model has the highest MAE of 15.3887, 

indicating the largest average error magnitude 

among the models compared. 

The RMSE, which measures the standard 

deviation of the prediction errors, is also 

reported for each model. The GA-BA-SVR 

model achieves the lowest RMSE of 43.6656, 

indicating the smallest standard deviation of 

prediction errors. The SVR-BA model has an 

RMSE of 44.6304, and the SVR model has an 

RMSE of 44.3660. The GA and ANN models 

show slightly higher RMSE values, while the 

GWO model has an RMSE of 43.7604, which 

is very close to the proposed model. The 

ABC-GA model has the highest RMSE of 

48.0977, indicating the largest standard 

deviation of prediction errors among the 

models compared. 

In summary, Table 5 demonstrates that the 

proposed GA-BA-SVR hybrid model 

outperforms the other hybrid and standalone 

models in terms of MAPE, MAE, and RMSE, 

indicating its superior accuracy and reliability 

in next 24-hour load forecasting. The GWO 

model has a performance very close to the 

proposed model, which indicates that it is also 

a very good model for the problem. The 

ABC-GA model shows the least accurate 

performance among the models compared. 

The results highlight the effectiveness of 

integrating the Genetic Algorithm, Bat 

Algorithm, and Support Vector Regression in 

enhancing the accuracy of short-term load 

forecasting. 
 

Table 5: Comparison of 24-Hour Load Forecast Performance Using Various Models 
 

Performance 

Metric 

GA-BA SVR-

BA 

GA-

BA-

SVR 

GA SVR ANN SVR-

GA 

GWO ABC-

GA 

MAPE (%) 0.2928 0.2819 0.2777 0.2939 0.2832 0.2876 0.2852 0.2779 0.3245 

MAE 13.7435 13.2772 13.0353 13.8313 13.3249 13.4514 13.3883 13.0199 15.3887 

RMSE 44.8798 44.6304 43.6656 45.2459 44.3660 44.2474 45.9889 43.7604 48.097 

 

Figs. 18a, 18b, and 18c provide a visual 

comparison of the performance metrics, 

Mean Absolute Percentage Error, Root Mean 

Square Error, and Mean Absolute Error 

respectively, for various models used in 

forecasting the next 24-hour load for April 

24th, 2021. These figures illustrate the 

comparative data from Table 5 in a graphical 

format, allowing for a more immediate 

understanding of the relative performance of 

each model. Fig. 18a displays the Mean 

Absolute Percentage Error for each model, 

where it is evident that the Genetic 

Algorithm-Bat Algorithm-Support Vector 
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Regression model achieves the lowest 

percentage error, signifying the highest 

accuracy in percentage-based predictions. 

This visual representation reinforces the 

numerical data from Table 5, highlighting the 

superior performance of the proposed model 

in minimizing percentage error. 

Fig. 18b illustrates the Root Mean Square 

Error for each model, showing that the 

Genetic Algorithm-Bat Algorithm-Support 

Vector Regression model also exhibits the 

lowest standard deviation of prediction 

errors. This visual comparison further 

emphasizes the model's accuracy and 

consistency in forecasting, aligning with the 

numerical findings presented in Table 5. 

Fig. 18c presents the Mean Absolute Error for 

each model, where the Genetic Algorithm-

Bat Algorithm-Support Vector Regression 

model demonstrates the smallest average 

magnitude of errors. This graphical 

representation reinforces the model's 

effectiveness in minimizing the absolute 

differences between predicted and actual load 

values, providing a clear visual confirmation 

of the numerical data from Table 5. 

Collectively, these figures provide a clear and 

concise visual summary of the comparative 

performance of the various models. They 

underscore the effectiveness of the Genetic 

Algorithm-Bat Algorithm-Support Vector 

Regression hybrid model in achieving 

superior accuracy and consistency in the next 

24-hour load forecasting, as demonstrated by 

the lowest Mean Absolute Percentage Error, 

Root Mean Square Error, and Mean Absolute 

Error values. The graphical representation of 

the data in Figs. 18a, 18b, and 18c 

complement the numerical data in Table 5, 

providing a more intuitive understanding of 

the relative performance of each model. 

Table 6 presents a comparison of the 48-hour 

ahead load forecast performance using 

various models for the period of April 24th to 

April 25th, 2021. The table includes several 

performance metrics such as Mean Absolute 

Percentage Error, Mean Absolute Error, 

Fractional Error, Mean Percentage Error, U-

statistic, Root Mean Square Error, R-squared 

value, Accuracy Percentage, Pearson 

Correlation Coefficient, and Convergence 

Time. 

The Mean Absolute Percentage Error, which 

measures the average percentage difference 

between predicted and actual values, ranges 

from 1.0582% to 2.7888% across the models, 

with the Genetic Algorithm-Bat Algorithm-

Support Vector Regression model achieving 

the lowest MAPE of 1.0582%. This indicates 

that the GA-BA-SVR model provides the 

most accurate percentage-based predictions 

for the 48-hour ahead forecast. The Mean 

Absolute Error, representing the average 

magnitude of errors, varies from 47.9669 to 

119.9681, with the GA-BA-SVR model also 

achieving the lowest MAE of 47.9669, 

indicating the smallest average error 

magnitude. The Fractional Error, which 

indicates the relative error magnitude, ranges 

from -0.1736 to 0.2176, with the GA-BA-

SVR model showing a relatively high value 

of 0.2176. The Mean Percentage Error, which 

indicates the bias of the forecast, ranges from 

-0.6848% to 0.2223%, with the GA-BA-SVR 

model showing a slight underestimation bias 

of -0.0734%. The U-statistic, which 

compares the model's performance to a naive 

forecast, ranges from 0.8845 to 1.0833, with 

the GA-BA-SVR model achieving a value of 

0.8845, indicating a performance close to a 

naive forecast. The Root Mean Square Error, 

representing the standard deviation of 

prediction errors, varies from 94.7610 to 

168.2447, with the GA-BA-SVR model 

achieving the lowest RMSE of 94.7610, 

indicating the smallest standard deviation of 

errors. The R-squared values are 

exceptionally high, ranging from 0.99999929 

to 0.99999985, indicating a very strong 

correlation between predicted and actual 

loads across all models. The Accuracy 

Percentage ranges from 97.0228% to 

97.8403%, with the GA-BA-SVR model 

achieving the highest accuracy of 97.8403%. 

The Pearson Correlation Coefficient, which 

measures the linear correlation between 

predicted and actual loads, ranges from 

0.99797116 to 0.99921907, with the GA-BA-

SVR model achieving a high PCC of 

0.99921672. The Convergence Time, 
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representing the time taken for the model to 

reach a solution, ranges from 2.236 seconds 

to 9.544 seconds, with the GA-BA-SVR 

model having a convergence time of 7.743 

seconds. 

In summary, Table 6 indicates that the 

Genetic Algorithm-Bat Algorithm-Support 

Vector Regression hybrid model 

demonstrates strong performance in 48-hour 

ahead load forecasting, achieving the lowest 

MAPE, MAE, and RMSE, and the highest 

accuracy percentage among the compared 

models. The model's performance in terms of 

R-squared and Pearson Correlation 

Coefficient also indicates a strong correlation 

between predicted and actual loads. The 

convergence time of the model is relatively 

moderate compared to other models. The 

results highlight the effectiveness of the GA-

BA-SVR model in long-term load 

forecasting, providing accurate and reliable 

predictions for a 48-hour horizon. 

Table 7 presents a comparative analysis of 

168-hour ahead load forecast performance 

using various models. The table includes 

several key performance metrics such as 

Mean Absolute Percentage Error, Mean 

Absolute Error, Fractional Error, Mean 

Percentage Error, U-statistic, Root Mean 

Square Error, R-squared value, Accuracy 

Percentage, Pearson Correlation Coefficient, 

and Convergence Time. The Mean Absolute 

Percentage Error, which measures the 

average percentage difference between 

predicted and actual values, ranges from 

1.9875% to 2.9935% across the models. The 

SVR-GA model achieves the lowest MAPE 

of 1.9875%, indicating the most accurate 

percentage-based predictions for the 168-

hour ahead forecast. The Genetic Algorithm-

Bat Algorithm-Support Vector Regression 

model achieves a MAPE of 2.4902%. 
 

 

Table 7: Comparison of 168-Hour Ahead Load Forecast Performance Using Various 

Models 
 

Performance 

Metric 

SVR GA-BA-

SVR 

ANN ABC-

GA 

GA-BA SSO SVR-

GA 

MAPE (%) 2.5821 2.4902 2.6608 2.9935 2.7888 2.5733 1.9875 

MAE 111.7320 107.7883 115.3132 128.3339 119.9681 111.2603 89.5677 

FE -0.0384 0.0280 -0.0982 -0.3634 -0.1736 -0.0275 -0.8386 

MPE (%) -0.2904 -0.4039 0.1214 -0.0267 -0.6848 -0.2504 -0.0917 

U-statistic 1.0190 0.9859 1.0479 1.1676 1.0833 1.0137 1.3560 

RMSE 158.2583 153.1168 162.7501 181.3387 168.2447 157.4245 128.3845 

R² 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

Accuracy (%) 97.3192 97.3994 97.0531 96.4775 97.2481 97.3611 80.9094 

PCC (r) 0.9982 0.9983 0.9807 0.9976 0.9980 0.9981 0.9988 

Convergence 

Time (s) 

5.741 9.443 3.351 3.945 4.067 7.615 
 

 

The Mean Absolute Error, representing the 

average magnitude of errors, varies from 

89.5677 to 128.3339, with the SVR-GA 

model also achieving the lowest MAE of 

89.5677, indicating the smallest average error 

magnitude. The GA-BA-SVR model 

achieves an MAE of 107.7883. 

The Fractional Error, which indicates the 

relative error magnitude, ranges from -0.8386 

to 0.0280, with the GA-BA-SVR model 

showing a value of 0.0280. The Mean 

Percentage Error, which indicates the bias of 

the forecast, ranges from -0.6848% to 

0.1214%, with the GA-BA-SVR model 

showing a slight underestimation bias of -

0.4039%. 

The U-statistic, which compares the model's 

performance to a naive forecast, ranges from 

0.9859 to 1.3560, with the GA-BA-SVR 

model achieving a value of 0.9859, indicating 

a performance close to a naive forecast. The 

Root Mean Square Error, representing the 

standard deviation of prediction errors, varies 

from 128.3845 to 181.3387, with the SVR-
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GA model achieving the lowest RMSE of 

128.3845. The GA-BA-SVR model achieves 

an RMSE of 153.1168. 

The R-squared values are exceptionally high, 

ranging from 0.99999983 to 0.99999988, 

indicating a very strong correlation between 

predicted and actual loads across all models. 

The Accuracy Percentage ranges from 

80.9094% to 97.3994%, with the GA-BA-

SVR model achieving an accuracy of 

97.3994%. 

The Pearson Correlation Coefficient, which 

measures the linear correlation between 

predicted and actual loads, ranges from 

0.99759617 to 0.99875752, with the GA-BA-

SVR model achieving a high PCC of 

0.99829641. The Convergence Time, 

representing the time taken for the model to 

reach a solution, ranges from 3.351 seconds 

to 9.443 seconds, with the GA-BA-SVR 

model having a convergence time of 9.443 

seconds. Finally, Table 7 shows that the SVR-

GA model demonstrates the best performance 

in 168-hour ahead load forecasting, achieving 

the lowest MAPE, MAE, and RMSE. 

However, the GA-BA-SVR model also 

demonstrates strong performance, achieving 

the highest accuracy percentage and a high 

Pearson Correlation Coefficient. The 

convergence time for the GA-BA-SVR model 

is the highest among the compared models. 

The results highlight the effectiveness of both 

SVR-GA and GA-BA-SVR models in long-

term load forecasting, providing accurate and 

reliable predictions for a 168-hour horizon. 

Fig. 19 depicts the next 24-hour load forecast 

graph for a full week, from April 24th to April 

30th, 2021, generated using the Genetic 

Algorithm-Bat Algorithm-Support Vector 

Regression (GA-BA-SVR) hybrid model. 

This figure provides a visual representation of 

the model's performance in predicting the 

electricity load over an extended period. The 

graph plots the actual electricity loads against 

the load forecasts produced by the GA-BA-

SVR model, allowing for a direct visual 

comparison of their accuracy. 

 

 

Fig.  19. Next 24h load forecast graph for 1 week using GA-BA-SVR for 24/04/2021 - 30/04/2021 

The x-axis of the graph represents time in 

hours, spanning the 24 hours of each day for 

the entire week, resulting in a total of 168 

hours. The y-axis represents the electricity 

load in Megawatts (MW). The blue line in the 

graph represents the actual electricity loads, 

while the grey line represents the load 

forecasts generated by the GA-BA-SVR 

model. 

A close examination of the graph reveals that 

the grey line, representing the GA-BA-SVR 

model's forecasts, closely follows the pattern 

of the blue line, representing the actual loads. 

This indicates that the model can accurately 

capture the fluctuations and trends in 

electricity consumption over the week. The 

model's forecasts show a strong alignment 

with the actual loads, particularly during 
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periods of significant load changes, such as 

sharp increases and decreases. This suggests 

that the GA-BA-SVR model effectively 

captures the dynamic nature of electricity 

load patterns, providing reliable predictions. 

The visual representation in Fig. 19 supports 

the quantitative results presented in Table 3, 

which showed low error rates (MAPE, MAE, 

RMSE) and high correlation (R², PCC) for the 

GA-BA-SVR model. The close alignment of 

the predicted and actual loads in the figure 

reinforces the model's accuracy and 

reliability in forecasting electricity loads over 

a week-long period. 

Furthermore, the graph demonstrates the 

model's consistency in performance across 

different days of the week, including both 

weekdays and weekends. This suggests that 

the GA-BA-SVR model is robust and 

adaptable to varying load patterns, making it 

suitable for practical applications in real-

world scenarios. 

Finally, Fig. 19 provides a compelling visual 

representation of the GA-BA-SVR model's 

performance in forecasting the next 24-hour 

electricity loads over a week-long period. The 

close alignment of the predicted and actual 

loads in the graph underscores the model's 

accuracy, reliability, and consistency, 

supporting the quantitative findings and 

highlighting the model's potential for 

practical implementation in short-term load 

forecasting. 
 

4.0 Conclusion 
 

The findings of this study highlight the strong 

predictive performance of the proposed 

Genetic Algorithm-Bat Algorithm-Support 

Vector Regression (GA-BA-SVR) hybrid 

model for both short-term and long-term 

electricity load forecasting. The model 

consistently demonstrates high accuracy, as 

evidenced by its low Mean Absolute 

Percentage Error (MAPE), Mean Absolute 

Error (MAE), and Root Mean Square Error 

(RMSE) values, alongside high R-squared 

and Pearson Correlation Coefficient values. 

Compared to other hybrid and standalone 

models, the GA-BA-SVR approach exhibits 

superior predictive capability, accurately 

capturing variations in electricity demand. 

The visual analysis of forecast results further 

corroborates these quantitative metrics, 

showing a close alignment between predicted 

and actual loads across different time 

horizons. Additionally, the model exhibits 

strong adaptability to changing load patterns, 

maintaining stable performance across 

various days of the week, which underscores 

its robustness and reliability in practical 

applications. 

Despite these strengths, certain challenges 

were encountered during the study. Managing 

the complexities of weekday load fluctuations 

proved to be a notable challenge, with slightly 

higher error rates observed mid-week 

compared to weekends. Although the model’s 

convergence time was generally fast, some 

variability was observed across different 

forecasting horizons, suggesting the need for 

further optimization. Additionally, while the 

U-statistic values were close to one, 

indicating strong predictive accuracy, they 

also revealed that in some cases, the model’s 

performance was not significantly superior to 

a naïve forecast. This suggests opportunities 

for further refinement in capturing complex 

and highly dynamic load behaviours. 

In conclusion, the GA-BA-SVR hybrid 

model presents a highly effective approach to 

electricity load forecasting, outperforming 

conventional models in both accuracy and 

reliability. By integrating the Genetic 

Algorithm, Bat Algorithm, and Support 

Vector Regression, the model effectively 

captures the nonlinear and dynamic nature of 

electricity loads, making it a valuable tool for 

energy management and planning. 

To further enhance its performance, future 

work should focus on refining the model’s 

ability to handle weekday load fluctuations 

and improving its forecasting accuracy 

beyond naïve predictions. Optimization of 

convergence time, particularly for longer 

forecasting horizons, would enhance 

computational efficiency. Additionally, 

evaluating the model’s performance in 

diverse geographical regions and under 

varying weather conditions would provide 

further validation of its robustness and 
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generalizability. Incorporating additional 

input variables such as weather patterns, 

economic indicators, and real-time grid 

conditions could further enhance predictive 

accuracy. Finally, developing real-time or 

near-real-time implementation strategies 

would facilitate the model’s integration into 

energy management systems, ensuring its 

effectiveness in real-world applications. 
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