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Abstract: In the modern digital era, traditional 

email systems remain vulnerable lacking 

end-to-end encryption, relying on centralized 

key management, and exposing users to 

breaches. We present the design and 

implementation of an enterprise-grade 

end-to-end email messaging and file 

encryption system built on the Internet 

Computer Protocol (ICP) blockchain. Our 

system leverages MetaMask and Plug wallet–

based authentication, 

Curve25519/XSalsa20-Poly1305 encryption, 

and AES-GCM for secure private-key storage. 

A React+TypeScript frontend integrates with a 

Python/Flask backend, while ICP canisters 

store only ciphertext and immutable hashes, 

ensuring auditability without exposing 

plaintext. All cryptographic operations occur 

client-side, removing trust in centralized 

servers and minimizing backend attack surface. 

Performance evaluations on a 2.3 GHz Intel 

Core i5 system demonstrate sub-2 ms key 

generation, under 6 ms round-trip 

encryption/decryption for 10 000-character 

payloads, and sub-2 ms AES-GCM key 

backup/restore. By eliminating single points of 

failure and meeting GDPR/HIPAA 

requirements through decentralized identity, 

our solution delivers real-time secure 

communication suitable for enterprise 

deployment. 

 

Keywords :  Email Security, End-to-End 

Encryption, Blockchain Technology, Identity 

Management, Cryptographic Key Management 

Okoli Kosisochukwu Juliet 

Department of Electronic and Computer 

Engineering, Nnamdi Azikiwe University, 

Awka, Nigeria 

Email: kj.okeke@coou.edu.ng 

Orcid id: https://orcid.org/0009-0005-0063-

9722 
 

Somtoochukwu Francis Ilo   

Department of Computer Engineering, 

Michael Okpara University of Agriculture, 

Umudike, Abia State, Nigeria 

Email: sf.ilo@mouau.edu.ng 

Orcid id: https://orcid.org/0009-0009-2275-

5491  
 

Azubuike Aniedu 

Department of Electronic and Computer 

Engineering, Nnamdi Azikiwe University, 

Awka, Nigeria 

Email: emmanuelsticx6@gmail.com 

Orcid id: https://orcid.org/0009-0004-8766-

3962 
 

1.0   Introduction  
 

Although email is still essential for personal as 

well as business correspondence in today's 

digital environment, traditional systems lack 

real end-to-end encryption, depend on 

centralized key management, and are 

susceptible to mass breaches hence they have 

serious security flaws. While several services 

encrypt data in transit, only E2EE guarantees 

that communications remain undecipherable to 

everyone except the intended recipient and 

sender even the email provider cannot decode 

them. Given that email is more and more used 

to send sensitive information from financial 

statements and legal signatures to health 

records and virtual products the stakes for 

privacy and regulatory compliance (e.g., 

HIPAA, GDPR) have never been greater. 

This project uses the Internet Computer 

Protocol (ICP) blockchain to create a totally 

decentralized, audit-friendly email and file 

encryption system to solve these problems. The 

mailto:kj.okeke@coou.edu.ng
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system eliminates single points of failure 

inherent in centralized architectures by 

combining distinctive, user‑generated keys 

with blockchain-based storage of ciphertext 

and metadata. Users have entire control over 

their private keys; the immutable ICP ledger 

records only encrypted information and access 

logs, therefore guaranteeing both strong 

security and smooth compliance without ever 

revealing plaintext to third parties. 

1.1 Review Of Related Works  

Several important developments have formed 

the scene of end-to-end email encryption and 

blockchain-backed messaging. Mallory 

Knodel et al. (2023) further codified the key 

security features confidentiality, integrity, 

authenticity, forward secrecy that any strong 

E2EE system should provide, but emphasized 

that in the real world, implementations 

frequently give up faultless forward secrecy for 

usability . Gleb Polozhiy and Nikolay 

Boldyrikhin (2022) benchmarked protocols 

like DH, MTI, and STS for enterprise email 

clients finding Diffie–Hellman unrivaled in 

simplicity but lacking built‑in authentication 

underscoring the need for out‑of‑band identity 

proofs . Yiming Shen (2021) proposed a hybrid 

PGP + Diffie–Hellman scheme, combining 

PGP's web of trust for long‑term identity with 

ephemeral DH session keys for forward 

secrecy; while this achieves confidentiality and 

integrity, it requires both parties to be online for 

the initial handshake, thereby limiting its 

practicality for asynchronous email delivery . 

Pelcu et al. (2023) examined authentication 

ceremonies and underlying protocols, 

demonstrating that “opportunistic” modes can 

block passive MitM attacks but remain 

vulnerable to active MitM without explicit user 

verification. 

Enhancements to secure email have addressed 

specific threat vectors. Integrating blockchain 

immutability with PGP by encrypting PGP 

keys under ECC and storing them in smart 

contracts, Md. Biplob Hossain et al. (2023) 

effectively removed trust from centralized key 

servers. Sevatap Duman et al. (2023) 

developed “PellucidAttachment,” which 

transparently sandbox‑renders email 

attachments as static previews, warning users 

before opening originals trimming malware 

exposure with minimal usability loss . 

Christoph Döberl et al. (2023) demonstrated 

the integration of post‑quantum digital 

signatures and encryption schemes into 

existing email transports (Delta Chat), enabling 

quantum‑resistant messaging over SMTP; 

however, full end‑to‑end guarantees require 

universal client upgrades . Clark et al. (2021) 

performed a stakeholder analysis of secure 

email systems, concluding that complexity in 

key management not cryptographic strength is 

the chief barrier to adoption in real‑world 

settings . 

Blockchain-based techniques have examined 

immutable audit logs and decentralised 

identity. Raman Singh et al. (2023) proposed a 

model whereby mobile network providers give 

on‑chain certificates for ratchet‑based 

messaging, but this telco‑centric architecture 

does not apply to enterprise policies. 

Abdelhadi Rachad et al. (2024) designed a 

system storing full email bodies and 

attachments on shared smart‑contract ledgers 

bypass SMTP/IMAP servers but raising 

on‑chain storage and latency issues. Dawei Xu 

et al. (2022) introduced BUES, which logs 

hashes of email content on a consortium 

blockchain for regulatory traceability, yet still 

relies on centralized index servers for content 

delivery. Muthu Pandeeswari R et al. (2024) 

and Al‑Julandani & Al‑Harthy (2022) used 

smart contracts or Ethereum wallet accounts to 

authenticate senders and prevent phishing, 

demonstrating phishing reduction and 

immutable logging but neither enforced 

client‑side message encryption nor addressed 

enterprise compliance. 

Although these studies promote particular 

aspects of secure email E2EE protocols, 
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attachment defenses, blockchain anchoring 

none offers an integrated, wallet-gated 

platform that combines client‑only NaCl‑based 

encryption/decryption, ICP canister metadata 

logging, and enterprise‑grade compliance out 

of the box. This gulf drives our user-friendly, 

fully integrated, ICP-native approach. 
 

2.0 Materials and Method 
 

The design and development of the end-to-end 

email encryption system on the ICP Blockchain 

required a combination of hardware and 

software components, as well as the integration 

of specific cryptographic algorithms. The 

hardware components included standard 

workstations equipped with 8 GB RAM and a 

modern multi-core CPU, which were used for 

development and testing. In addition, an 

optional Hardware Security Module (HSM) 

was employed for secure generation and 

storage of private keys in production 

environments. Routers and switches were also 

utilized to simulate enterprise LAN/WAN 

environments. 

The software environment was built primarily 

on Python (version 3.9 and above), which 

served as the core language for backend 

services, canister deployment scripts, and 

integration code. Flask, a lightweight Python 

web framework, was used to implement 

RESTful APIs, while Node.js and npm 

provided the runtime and package management 

for frontend tooling and wallet integration 

scripts. The user interface was developed using 

React (version 18 and above) with TypeScript, 

supported by Tailwind CSS for responsive and 

consistent styling. For cryptographic 

operations, TweetNaCl.js was integrated to 

provide Curve25519 key exchange and 

XSalsa20-Poly1305 encryption, while the Web 

Crypto API was employed for PBKDF2 key 

derivation and AES-GCM symmetric 

encryption of private key blobs. Interaction 

with ICP canisters was facilitated through 

@dfinity/agent and ic.js, alongside the dfx ICP 

SDK toolchain, which supported building, 

deployment, and testing of canisters on both 

local and remote Internet Computer networks. 

Authentication and wallet integration were 

achieved using MetaMask and Plug Wallet 

browser extensions, which supported 

ECDSA/secp256k1 signature-based login and 

ICP Principal-based login, respectively. 

The cryptographic foundation of the system 

was built on robust algorithms. 

ECDSA/secp256k1 was used for MetaMask 

signatures, while X25519 supported secure key 

agreement. Authenticated encryption was 

implemented using XSalsa20-Poly1305, 

complemented by secure nonce generation and 

Poly1305 message authentication codes for 

data integrity. Additionally, HTTPS/TLS 

protocols were employed to ensure secure data 

transport across networks. 

 
 

Table 1: Algorithms Used 
 

Purpose Algorithm Tool Used 

Key pair & encryption Curve25519 + XSalsa20 Tweetnacl 

Message authentication XSalsa20-Poly1305 tweetnacl (with box) 

Password-based key derivation PBKDF2 Web Crypto API 

Symmetric encryption AES-GCM Web Crypto API 

MetaMask signatures ECDSA/secp256k1 Eth_account 

Hashing (fingerprint) SHA-512 tweetnacl.hash 
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2.2 Methods 

This research employed three complementary 

methodologies: the Structured Systems 

Analysis and Design Methodology (SSADM), 

Object-Oriented Analysis and Design 

(OOAD), and Prototyping. SSADM is a 

systems-based approach to the analysis and 

design of information systems, offering a set of 

techniques and graphical tools that provide a 

structured pathway for developing system 

specifications easily understood by users. It 

makes use of graphical representations such as 

Data Flow Diagrams (DFDs) and Data 

Dictionaries (DDs) to capture system 

requirements. In this study, SSADM was 

applied through several contextual 

components, including problem identification, 

feasibility study, analysis, design, 

implementation, and post-implementation 

maintenance, as presented in Table 2. 
 

Table 2. Components of the Structured Systems Analysis and Design Methodology (SSADM) 

Applied in This Research 

 

Endpoint Method Description Parameters  
GET Base route to confirm API 

is running 

(returns ” all Api 

Working”) 

 

/auth 

 

POST 

 

Authorizes signatures and 

login through metamask 

wallet 

 

Srtingmessage 

/keys/generate-key POST Generates a public-private 

key pair for the user 

user_id, password 

(JSON) 

 

/lookup-keys/<id> 

 

GET 

 

Returns public keys 

associated to a user ID 

 

Array of Characters 

/keys/import-key POST Imports and decrypts a 

stored private key 

encrypted_key, 

password 

/message/encrypt-message POST Encrypts a message using 

the recipient's public key 

recipient_key, message 

/message/decrypt-

message/<message-id> 

POST Decrypts an incoming 

message using stored 

private key 

sender_key, 

encrypted_message 

/send-to-canister POST Sends an encrypted 

message or key record to an 

ICP canister 

principal_id, data, 

signature 

/fetch-from-canister GET Retrieves messages or 

verification data from ICP 

message_id,user_id 

The Object-Oriented Analysis and Design 

methodology was also adopted to identify 

software engineering requirements and develop 

specifications in terms of a system’s object 

model, followed by implementation of the 

conceptual model produced during analysis. 

This methodology enabled the research to 

focus on modularity, reusability, and 

scalability. In addition, prototyping was used to 

iteratively refine the system, allowing 
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continuous feedback and validation of design 

assumptions until the final solution was 

achieved. 

2.2 System Design. 
 

2.3.1 Software System Design and 

Implementation 
2.2  

The system incorporated an encrypted key-

sharing mechanism using blockchain 

technology to design a secure email solution 

with a flexible and integrable architecture. The 

solution addressed the challenges of email 

security by ensuring confidentiality, integrity, 

availability, non-repudiation, authentication, 

control, and audit. The architecture, illustrated 

in Figure 3.1, employed blockchain as a core 

component, and interactions among its 

modules were regulated by distributed 

protocols to guarantee process security. The 

model promoted end-to-end encryption for 

email communication. 

The system was organized into five modules. 

The Authentication Module allowed users to 

connect their Web3 wallets, either MetaMask 

for Ethereum-style ECDSA signatures or Plug 

Wallet for ICP Principal-based authentication, 

using a password-less, signature-based login 

process that ensured secure access without 

transmitting plaintext credentials. The Key 

Management Module generated Curve25519 

keypairs within the browser or decrypted stored 

blobs to retrieve existing keys. Public keys 

were registered on the ICP canister, while 

private keys were encrypted under AES-GCM 

with a PBKDF2-derived key and stored locally. 

The Encryption Module ensured that message 

encryption and decryption took place solely in 

the browser, using Curve25519 with XSalsa20-

Poly1305 for authenticated encryption. The 

Blockchain Interaction Module handled all key 

registration, message submission, and inbox 

retrieval through canister API calls, ensuring 

only encrypted data was stored on-chain. The 

Storage Module combined blockchain 

immutability with local PostgreSQL and Redis 

caching to optimize both decentralization and 

system performance. 
 

2.3.2 Frontend User Interface Design 
 

The frontend, developed with React and 

TypeScript, was designed to remain inactive 

until a wallet connection was established. The 

application, accessible at https://whisper-icp-

net.vercel.app/, featured several core user 

interface components. These included a 

Connect Wallet screen with a MetaMask 

integration button, a Key Setup dialog for 

keypair generation or unlocking, and inbox and 

composer views that only became visible once 

the private key was unlocked. Tailwind CSS 

ensured responsive layouts across devices. The 

frontend architecture relied on React (via Vite) 

for fast rendering, TypeScript for type safety, 

Tailwind CSS for utility-based styling, and the 

React Context API for managing 

authentication state, cryptographic keys, and 

message data. Integration with Web3.js, 

ethers.js, WalletConnect, and Plug facilitated 

secure wallet logins, while TweetNaCl and the 

Web Crypto API enabled cryptographic 

operations within the browser. 
 

2.3.3 Backend Development 
 

The backend was developed using Flask, a 

lightweight Python framework that followed 

RESTful API concepts to achieve modularity, 

scalability, and maintainability within a three-

tier architecture. The Application Layer 

managed routes for wallet login, key 

registration, and message operations while 

enforcing CORS and JWT policies. The 

Business Logic Layer orchestrated encryption 

and decryption, serialized payloads, and 

interfaced with ICP boundary nodes. The Data 

Layer connected to ICP canisters as well as 

PostgreSQL and Redis databases for metadata 

storage and caching. 

Key API endpoints included wallet 

authorization (/auth), key generation 

(/keys/generate-key), key import 

(/keys/import-key), key lookup (/lookup-

https://whisper-icp-net.vercel.app/?utm_source=chatgpt.com
https://whisper-icp-net.vercel.app/?utm_source=chatgpt.com
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keys/<id>), message encryption 

(/message/encrypt-message), message 

decryption (/message/decrypt-

message/<message-id>), sending encrypted 

data to canisters (/send-to-canister), and 

retrieving encrypted messages from canisters 

(/fetch-from-canister). A base route (/) was also 

included to confirm API functionality. 

The implementation process consisted of two 

main workflows. For user registration and key 

management, new users generated Curve25519 

keypairs client-side, transmitted the public key 

to the canister, and stored the private key 

locally under AES-GCM encryption. 

Returning users decrypted stored blobs with 

their password to retrieve the private key. For 

email communication, the send process 

involved retrieving the recipient’s public key, 

encrypting the plaintext with the NaCl “box” 

operation, and transmitting the ciphertext to the 

blockchain, while the fetch process retrieved 

encrypted messages, decrypted them client-

side, and restored the plaintext securely. 

The encryption framework relied on 

Curve25519 and XSalsa20-Poly1305 for 

public-key encryption, supplemented by 

PBKDF2 and AES-GCM for symmetric 

protection of private-key blobs. The system 

ensured both confidentiality and authenticity 

by combining an elliptic-curve Diffie–Hellman 

exchange for secure key derivation with 

Poly1305 message authentication codes for 

integrity verification. Password-based 

protection employed PBKDF2 with HMAC-

SHA256 (100,000 iterations) to derive a secure 

key, while AES-GCM provided encryption and 

authentication with a 96-bit initialization 

vector. 

3.0 Results and Discussion 

The developed system integrates a 

Python/Flask backend with MongoDB and 

SQLite for session management and caching, 

alongside MetaMask authentication and 

elliptic-curve cryptography (ECC) for end-to-

end encryption. Users authenticate by signing a 

server-generated nonce through MetaMask, 

after which their public keys are registered on 

Internet Computer (ICP) canisters. Message 

encryption occurs entirely on the client side 

using the recipient’s public key, while 

encrypted messages and key data are stored 

immutably on-chain. RESTful endpoints such 

as /login, /registerKey, /sendMessage, and 

/fetchMessages coordinate all operations. 

Functional testing confirmed that these 

endpoints reliably handled valid requests and 

returned appropriate error messages for invalid 

inputs, thereby validating both reliability and 

robustness. 

3.1 Performance Analysis 

The performance evaluation demonstrates the 

system’s real-time suitability and efficiency. 

As shown in Fig. 1, key generation using 

Curve25519 required an average of 1.10 ms,  

while AES-GCM export and import operations 

completed in 1.5 ms and 1.8 ms, respectively. 

These lightweight cryptographic operations are 

crucial for user adoption, as they ensure that 

secure workflows introduce no perceptible 

latency. 

Fig. 2 visualizes how the time taken for 

encryption and decryption scales with the size 

of the message. provides crucial evidence of 

the system's efficiency and scalability. It 

demonstrates that the client-side cryptographic 

operations are lightweight and maintain low 

latency even as the data payload increases. This 

is a critical finding for user experience and 

enterprise adoption. The plot  clearly shows a 

linear relationship between message size and 

the time required for both encryption and 

decryption. This is an expected and positive 

result, indicating that the cryptographic 

algorithms (Curve25519/XSalsa20-Poly1305) 

are efficiently implemented and do not 

introduce significant computational overhead. 

Based on the plot, at a message length of 0 

characters, both encryption and decryption take 

approximately 0.5 ms. This baseline time 

represents the overhead of setting up the 
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cryptographic function calls and is remarkably 

low. 

The slope of the lines is gradual, showing that 

even with a substantial increase in message 

length (up to 10,000 characters), the total time 

remains well under 2 ms for both operations. 

For instance, at 10,000 characters, encryption 

takes about 1.9 ms and decryption takes about 

1.6 ms. This performance is well within the 

threshold for real-time communication, as it's 

imperceptible to the average user. 

Across all data points, the decryption time is 

consistently slightly lower than the encryption 

time. This is a common characteristic of 

asymmetric encryption schemes. In this case, 

the TweetNaCl.js library's implementation may 

be optimized such that the process of key 

derivation and data decryption is 

computationally less intensive than the initial 

encryption and authentication tag generation. 

This performance analysis confirms that the 

choice of client-side cryptography is effective. 

By performing these operations locally in the 

user's browser, the system offloads 

computational work from a central server and 

eliminates network latency as a bottleneck for 

the encryption process itself. It also reinforces 

the system's core design principle: 

cryptographic trust and control reside with the 

user, without compromising on speed or 

usability. 

 
Fig. 1: Histogram representing  key generation and AES-GOM exponential time 
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Fig. 2: Graph of Encryption and Decryption Time against Data Size 

 

Key generation performance was visualized in 

Fig. 2, while encryption and decryption times 

against data size are shown in Fig. 3. The 

results indicate that Curve25519 keypair 

generation via the TweetNaCl library 

consistently achieved sub-2 ms performance, 

enabling dynamic identity creation without 

workflow interruptions. Encryption times 

averaged 0.20 ms for 100-character messages, 

0.65 ms for 1,000 characters, and 1.80 ms for 

longer payloads. Decryption times were 

slightly higher but followed a similar trend, 

averaging 0.25 ms, 0.70 ms, and 2.00 ms for the 

same input sizes. These results confirm that 

both the NaCl box operation and Web Crypto 

AES-GCM implementations scale linearly with 

message size and maintain real-time 

responsiveness (see Fig. 3). 

 
Fig. 3:Encryption and decryption time versus message size 
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The linear relationship between execution time 

and message length indicates efficient handling 

of larger payloads without compromising 

system responsiveness. Importantly, the 

absence of outliers across repeated tests 

highlights the stability of the cryptographic 

implementation. By ensuring that all critical 

operations—including key generation, 

encryption, decryption, and key backup—

complete in under a few milliseconds, the 

system meets the demands of real-time 

communication in Web3 environments. These 

findings validate the use of XSalsa20-

Poly1305 for authenticated encryption, 

Curve25519 for key provisioning, and AES-

GCM for secure key lifecycle management. 

3.2 User Interface Performance 

The user interface was evaluated for usability 

and robustness. The login and authentication 

process, illustrated in Fig. 4, begins when a user 

clicks “Connect MetaMask” or connects via 

Plug Wallet for ICP Principal-based login. 

After signature verification, the application 

grants a passwordless session and stores the 

authenticated identifier locally. Users who 

decline connection remain blocked from 

protected features, demonstrating strict 

enforcement of access control. 

 

 
Fig 4:  User Login and Authentication

 
Fig. 5:  User Dash-Board 
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Following successful authentication, users are 

directed to a dashboard (Fig. 5) where they can 

generate Curve25519 keypairs through the 

TweetNaCl library (Fig. 6). The generated 

public key is stored on-chain and tied to the 

user’s identity, while the private key is AES-

GCM encrypted under a user-specified 

password and stored locally. Export and import 

functionalities are illustrated in Fig. 7 and Fig. 

8, respectively, ensuring portability of 

encrypted key blobs across devices. This 

mechanism enables continuity of secure 

communication without compromising key 

integrity. 

 

 
Fig. 6. Key generation and lookup 

 
Fig. 7. Exporting private keys with password creation prompt. 
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Fig. 8. Importing private keys from encrypted blobs 

When sending encrypted messages, users 

compose a message in the dashboard, and upon 

sending, the client performs a NaCl box 

operation with the recipient’s public key, 

sender’s private key, and a nonce. The resulting 

ciphertext is base64-encoded and transmitted 

on-chain (Fig. 9). Upon message reception, 

ciphertext payloads appear in the inbox (Fig. 

10), and once the private key is unlocked, the 

NaCl box.open operation retrieves the plaintext 

(Fig. 11). Testing confirmed that valid key 

pairs always yielded successful decryption, 

while mismatched pairs failed gracefully, 

thereby ensuring confidentiality and integrity. 

 

Fig. 9. Messaging dashboard for encryption and sending 
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Fig. 10. Received encrypted message in inbox 

 
Fig. 11. Display of decrypted message 
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Importantly, round-trip cryptographic 

processes—including key generation, message 

encryption, transmission, and decryption—

remained under 6 ms even for messages 

exceeding 1,000 characters. This latency is 

imperceptible to end users and satisfies the 

responsiveness required for conversational 

applications. Furthermore, AES-GCM-based 

key backup and restoration averaged less than 

3 ms, ensuring seamless user experience during 

key management. Consistency of timings 

across multiple tests, with variations under 0.25 

ms, underscores the robustness of the system 

against browser activity and network jitter. 

 

3.3 Comparative Evaluation 

To contextualize system performance, the 

proposed framework was compared against 

existing email security mechanisms, as 

summarized in Table 3. Traditional email 

security methods provide low processing times 

but remain vulnerable to phishing and 

spoofing. PKI and S/MIME offer stronger 

cryptographic guarantees but suffer from 

scalability limitations due to complex key 

management and high resource requirements. 

PGP, while cryptographically sound, is 

hindered by inefficient revocation processes 

and synchronization delays, leading to 

widespread usability issues. 

 

Table 3. Comparison of the proposed system with existing email security frameworks 

 

Framework Processing Time Scalability Resource 

Consumption 

Traditional 

Email 

Security 

Low processing time 

but vulnerable to 

phishing and spoofing 

Highly scalable but lacks 

advanced verification 

mechanisms 

Minimal, but weak 

security 

PKI and 

S/MIME 

Moderate processing 

time due to 

cryptographic 

operations 

Limited scalability due to 

complex key management 

High resource 

consumption for key 

exchange 

PGP Inefficient revocation 

and synchronization 

delays 

Only sign or encrypt but 

not both simultaneously 

Extensive inactive 

key servers 

Current 

System 

Optimized processing 

with lightweight hash 

verification 

Highly scalable via 

decentralized architecture 

without reliance on 

cryptocurrency 

Low, no complex 

cryptographic 

management 

required 

The proposed system demonstrates superior 

trade-offs, achieving both optimized 

processing times and high scalability due to its 

decentralized design. Unlike PKI or PGP, it 

eliminates reliance on centralized trust 

infrastructures and reduces key management 

overhead. Its lightweight cryptographic 

processes, executed entirely client-side, 

minimize server resource consumption while 

preserving strong guarantees of confidentiality, 

integrity, and authentication. 

4.0 Conclusion  
 

The findings of this study show that the 

integration of blockchain technology, 

particularly through the Internet Computer 

Protocol (ICP), provides a secure and scalable 

solution for implementing end-to-end email 

encryption. The analysis demonstrates that the 
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system ensures confidentiality, integrity, and 

authentication of messages by combining 

blockchain-based storage, cryptographic key 

management, and robust encryption algorithms 

such as XSalsa20-Poly1305 and AES GCM. 

The workflow, as summarized in Table 2 and 

illustrated in Fig. 12, highlights the seamless 

integration of login, key management, 

encryption, and decryption processes, which 

collectively strengthen user data protection 

against unauthorized access and potential cyber 

threats. The evaluation confirms that the 

system improves trust, reduces risks of data 

breaches, and enhances transparency in secure 

communication compared to conventional 

email encryption methods. 
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