

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238

Design and Development of End to End Email Encryption System

Using ICP Blockchain

Okoli kosisochukwu Juliet*, Somtoochukwu Francis Ilo and Azubuike Aniedu

Received : 07 July 2025/Accepted : 29 August 2025/Published online : 05 September 2025

Abstract: In the modern digital era, traditional

email systems remain vulnerable lacking

end-to-end encryption, relying on centralized

key management, and exposing users to

breaches. We present the design and

implementation of an enterprise-grade

end-to-end email messaging and file

encryption system built on the Internet

Computer Protocol (ICP) blockchain. Our

system leverages MetaMask and Plug wallet–

based authentication,

Curve25519/XSalsa20-Poly1305 encryption,

and AES-GCM for secure private-key storage.

A React+TypeScript frontend integrates with a

Python/Flask backend, while ICP canisters

store only ciphertext and immutable hashes,

ensuring auditability without exposing

plaintext. All cryptographic operations occur

client-side, removing trust in centralized

servers and minimizing backend attack surface.

Performance evaluations on a 2.3 GHz Intel

Core i5 system demonstrate sub-2 ms key

generation, under 6 ms round-trip

encryption/decryption for 10 000-character

payloads, and sub-2 ms AES-GCM key

backup/restore. By eliminating single points of

failure and meeting GDPR/HIPAA

requirements through decentralized identity,

our solution delivers real-time secure

communication suitable for enterprise

deployment.

Keywords : Email Security, End-to-End

Encryption, Blockchain Technology, Identity

Management, Cryptographic Key Management

Okoli Kosisochukwu Juliet

Department of Electronic and Computer

Engineering, Nnamdi Azikiwe University,

Awka, Nigeria

Email: kj.okeke@coou.edu.ng

Orcid id: https://orcid.org/0009-0005-0063-

9722

Somtoochukwu Francis Ilo

Department of Computer Engineering,

Michael Okpara University of Agriculture,

Umudike, Abia State, Nigeria

Email: sf.ilo@mouau.edu.ng

Orcid id: https://orcid.org/0009-0009-2275-

5491

Azubuike Aniedu

Department of Electronic and Computer

Engineering, Nnamdi Azikiwe University,

Awka, Nigeria

Email: emmanuelsticx6@gmail.com

Orcid id: https://orcid.org/0009-0004-8766-

3962

1.0 Introduction

Although email is still essential for personal as

well as business correspondence in today's

digital environment, traditional systems lack

real end-to-end encryption, depend on

centralized key management, and are

susceptible to mass breaches hence they have

serious security flaws. While several services

encrypt data in transit, only E2EE guarantees

that communications remain undecipherable to

everyone except the intended recipient and

sender even the email provider cannot decode

them. Given that email is more and more used

to send sensitive information from financial

statements and legal signatures to health

records and virtual products the stakes for

privacy and regulatory compliance (e.g.,

HIPAA, GDPR) have never been greater.

This project uses the Internet Computer

Protocol (ICP) blockchain to create a totally

decentralized, audit-friendly email and file

encryption system to solve these problems. The

mailto:kj.okeke@coou.edu.ng
mailto:sf.ilo@mouau.edu.ng
mailto:emmanuelsticx6@gmail.com
https://orcid.org/0009-0004-8766-3962
https://orcid.org/0009-0004-8766-3962

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 225

system eliminates single points of failure

inherent in centralized architectures by

combining distinctive, user‑generated keys

with blockchain-based storage of ciphertext

and metadata. Users have entire control over

their private keys; the immutable ICP ledger

records only encrypted information and access

logs, therefore guaranteeing both strong

security and smooth compliance without ever

revealing plaintext to third parties.

1.1 Review Of Related Works

Several important developments have formed

the scene of end-to-end email encryption and

blockchain-backed messaging. Mallory

Knodel et al. (2023) further codified the key

security features confidentiality, integrity,

authenticity, forward secrecy that any strong

E2EE system should provide, but emphasized

that in the real world, implementations

frequently give up faultless forward secrecy for

usability . Gleb Polozhiy and Nikolay

Boldyrikhin (2022) benchmarked protocols

like DH, MTI, and STS for enterprise email

clients finding Diffie–Hellman unrivaled in

simplicity but lacking built‑in authentication

underscoring the need for out‑of‑band identity

proofs . Yiming Shen (2021) proposed a hybrid

PGP + Diffie–Hellman scheme, combining

PGP's web of trust for long‑term identity with

ephemeral DH session keys for forward

secrecy; while this achieves confidentiality and

integrity, it requires both parties to be online for

the initial handshake, thereby limiting its

practicality for asynchronous email delivery .

Pelcu et al. (2023) examined authentication

ceremonies and underlying protocols,

demonstrating that “opportunistic” modes can

block passive MitM attacks but remain

vulnerable to active MitM without explicit user

verification.

Enhancements to secure email have addressed

specific threat vectors. Integrating blockchain

immutability with PGP by encrypting PGP

keys under ECC and storing them in smart

contracts, Md. Biplob Hossain et al. (2023)

effectively removed trust from centralized key

servers. Sevatap Duman et al. (2023)

developed “PellucidAttachment,” which

transparently sandbox‑renders email

attachments as static previews, warning users

before opening originals trimming malware

exposure with minimal usability loss .

Christoph Döberl et al. (2023) demonstrated

the integration of post‑quantum digital

signatures and encryption schemes into

existing email transports (Delta Chat), enabling

quantum‑resistant messaging over SMTP;

however, full end‑to‑end guarantees require

universal client upgrades . Clark et al. (2021)

performed a stakeholder analysis of secure

email systems, concluding that complexity in

key management not cryptographic strength is

the chief barrier to adoption in real‑world

settings .

Blockchain-based techniques have examined

immutable audit logs and decentralised

identity. Raman Singh et al. (2023) proposed a

model whereby mobile network providers give

on‑chain certificates for ratchet‑based

messaging, but this telco‑centric architecture

does not apply to enterprise policies.

Abdelhadi Rachad et al. (2024) designed a

system storing full email bodies and

attachments on shared smart‑contract ledgers

bypass SMTP/IMAP servers but raising

on‑chain storage and latency issues. Dawei Xu

et al. (2022) introduced BUES, which logs

hashes of email content on a consortium

blockchain for regulatory traceability, yet still

relies on centralized index servers for content

delivery. Muthu Pandeeswari R et al. (2024)

and Al‑Julandani & Al‑Harthy (2022) used

smart contracts or Ethereum wallet accounts to

authenticate senders and prevent phishing,

demonstrating phishing reduction and

immutable logging but neither enforced

client‑side message encryption nor addressed

enterprise compliance.

Although these studies promote particular

aspects of secure email E2EE protocols,

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 226

attachment defenses, blockchain anchoring

none offers an integrated, wallet-gated

platform that combines client‑only NaCl‑based

encryption/decryption, ICP canister metadata

logging, and enterprise‑grade compliance out

of the box. This gulf drives our user-friendly,

fully integrated, ICP-native approach.

2.0 Materials and Method

The design and development of the end-to-end

email encryption system on the ICP Blockchain

required a combination of hardware and

software components, as well as the integration

of specific cryptographic algorithms. The

hardware components included standard

workstations equipped with 8 GB RAM and a

modern multi-core CPU, which were used for

development and testing. In addition, an

optional Hardware Security Module (HSM)

was employed for secure generation and

storage of private keys in production

environments. Routers and switches were also

utilized to simulate enterprise LAN/WAN

environments.

The software environment was built primarily

on Python (version 3.9 and above), which

served as the core language for backend

services, canister deployment scripts, and

integration code. Flask, a lightweight Python

web framework, was used to implement

RESTful APIs, while Node.js and npm

provided the runtime and package management

for frontend tooling and wallet integration

scripts. The user interface was developed using

React (version 18 and above) with TypeScript,

supported by Tailwind CSS for responsive and

consistent styling. For cryptographic

operations, TweetNaCl.js was integrated to

provide Curve25519 key exchange and

XSalsa20-Poly1305 encryption, while the Web

Crypto API was employed for PBKDF2 key

derivation and AES-GCM symmetric

encryption of private key blobs. Interaction

with ICP canisters was facilitated through

@dfinity/agent and ic.js, alongside the dfx ICP

SDK toolchain, which supported building,

deployment, and testing of canisters on both

local and remote Internet Computer networks.

Authentication and wallet integration were

achieved using MetaMask and Plug Wallet

browser extensions, which supported

ECDSA/secp256k1 signature-based login and

ICP Principal-based login, respectively.

The cryptographic foundation of the system

was built on robust algorithms.

ECDSA/secp256k1 was used for MetaMask

signatures, while X25519 supported secure key

agreement. Authenticated encryption was

implemented using XSalsa20-Poly1305,

complemented by secure nonce generation and

Poly1305 message authentication codes for

data integrity. Additionally, HTTPS/TLS

protocols were employed to ensure secure data

transport across networks.

Table 1: Algorithms Used

Purpose Algorithm Tool Used

Key pair & encryption Curve25519 + XSalsa20 Tweetnacl

Message authentication XSalsa20-Poly1305 tweetnacl (with box)

Password-based key derivation PBKDF2 Web Crypto API

Symmetric encryption AES-GCM Web Crypto API

MetaMask signatures ECDSA/secp256k1 Eth_account

Hashing (fingerprint) SHA-512 tweetnacl.hash

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 227

2.2 Methods

This research employed three complementary

methodologies: the Structured Systems

Analysis and Design Methodology (SSADM),

Object-Oriented Analysis and Design

(OOAD), and Prototyping. SSADM is a

systems-based approach to the analysis and

design of information systems, offering a set of

techniques and graphical tools that provide a

structured pathway for developing system

specifications easily understood by users. It

makes use of graphical representations such as

Data Flow Diagrams (DFDs) and Data

Dictionaries (DDs) to capture system

requirements. In this study, SSADM was

applied through several contextual

components, including problem identification,

feasibility study, analysis, design,

implementation, and post-implementation

maintenance, as presented in Table 2.

Table 2. Components of the Structured Systems Analysis and Design Methodology (SSADM)

Applied in This Research

Endpoint Method Description Parameters
GET Base route to confirm API

is running

(returns ” all Api

Working”)

/auth

POST

Authorizes signatures and

login through metamask

wallet

Srtingmessage

/keys/generate-key POST Generates a public-private

key pair for the user

user_id, password

(JSON)

/lookup-keys/<id>

GET

Returns public keys

associated to a user ID

Array of Characters

/keys/import-key POST Imports and decrypts a

stored private key

encrypted_key,

password

/message/encrypt-message POST Encrypts a message using

the recipient's public key

recipient_key, message

/message/decrypt-

message/<message-id>

POST Decrypts an incoming

message using stored

private key

sender_key,

encrypted_message

/send-to-canister POST Sends an encrypted

message or key record to an

ICP canister

principal_id, data,

signature

/fetch-from-canister GET Retrieves messages or

verification data from ICP

message_id,user_id

The Object-Oriented Analysis and Design

methodology was also adopted to identify

software engineering requirements and develop

specifications in terms of a system’s object

model, followed by implementation of the

conceptual model produced during analysis.

This methodology enabled the research to

focus on modularity, reusability, and

scalability. In addition, prototyping was used to

iteratively refine the system, allowing

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 228

continuous feedback and validation of design

assumptions until the final solution was

achieved.

2.2 System Design.

2.3.1 Software System Design and

Implementation
2.2

The system incorporated an encrypted key-

sharing mechanism using blockchain

technology to design a secure email solution

with a flexible and integrable architecture. The

solution addressed the challenges of email

security by ensuring confidentiality, integrity,

availability, non-repudiation, authentication,

control, and audit. The architecture, illustrated

in Figure 3.1, employed blockchain as a core

component, and interactions among its

modules were regulated by distributed

protocols to guarantee process security. The

model promoted end-to-end encryption for

email communication.

The system was organized into five modules.

The Authentication Module allowed users to

connect their Web3 wallets, either MetaMask

for Ethereum-style ECDSA signatures or Plug

Wallet for ICP Principal-based authentication,

using a password-less, signature-based login

process that ensured secure access without

transmitting plaintext credentials. The Key

Management Module generated Curve25519

keypairs within the browser or decrypted stored

blobs to retrieve existing keys. Public keys

were registered on the ICP canister, while

private keys were encrypted under AES-GCM

with a PBKDF2-derived key and stored locally.

The Encryption Module ensured that message

encryption and decryption took place solely in

the browser, using Curve25519 with XSalsa20-

Poly1305 for authenticated encryption. The

Blockchain Interaction Module handled all key

registration, message submission, and inbox

retrieval through canister API calls, ensuring

only encrypted data was stored on-chain. The

Storage Module combined blockchain

immutability with local PostgreSQL and Redis

caching to optimize both decentralization and

system performance.

2.3.2 Frontend User Interface Design

The frontend, developed with React and

TypeScript, was designed to remain inactive

until a wallet connection was established. The

application, accessible at https://whisper-icp-

net.vercel.app/, featured several core user

interface components. These included a

Connect Wallet screen with a MetaMask

integration button, a Key Setup dialog for

keypair generation or unlocking, and inbox and

composer views that only became visible once

the private key was unlocked. Tailwind CSS

ensured responsive layouts across devices. The

frontend architecture relied on React (via Vite)

for fast rendering, TypeScript for type safety,

Tailwind CSS for utility-based styling, and the

React Context API for managing

authentication state, cryptographic keys, and

message data. Integration with Web3.js,

ethers.js, WalletConnect, and Plug facilitated

secure wallet logins, while TweetNaCl and the

Web Crypto API enabled cryptographic

operations within the browser.

2.3.3 Backend Development

The backend was developed using Flask, a

lightweight Python framework that followed

RESTful API concepts to achieve modularity,

scalability, and maintainability within a three-

tier architecture. The Application Layer

managed routes for wallet login, key

registration, and message operations while

enforcing CORS and JWT policies. The

Business Logic Layer orchestrated encryption

and decryption, serialized payloads, and

interfaced with ICP boundary nodes. The Data

Layer connected to ICP canisters as well as

PostgreSQL and Redis databases for metadata

storage and caching.

Key API endpoints included wallet

authorization (/auth), key generation

(/keys/generate-key), key import

(/keys/import-key), key lookup (/lookup-

https://whisper-icp-net.vercel.app/?utm_source=chatgpt.com
https://whisper-icp-net.vercel.app/?utm_source=chatgpt.com

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 229

keys/<id>), message encryption

(/message/encrypt-message), message

decryption (/message/decrypt-

message/<message-id>), sending encrypted

data to canisters (/send-to-canister), and

retrieving encrypted messages from canisters

(/fetch-from-canister). A base route (/) was also

included to confirm API functionality.

The implementation process consisted of two

main workflows. For user registration and key

management, new users generated Curve25519

keypairs client-side, transmitted the public key

to the canister, and stored the private key

locally under AES-GCM encryption.

Returning users decrypted stored blobs with

their password to retrieve the private key. For

email communication, the send process

involved retrieving the recipient’s public key,

encrypting the plaintext with the NaCl “box”

operation, and transmitting the ciphertext to the

blockchain, while the fetch process retrieved

encrypted messages, decrypted them client-

side, and restored the plaintext securely.

The encryption framework relied on

Curve25519 and XSalsa20-Poly1305 for

public-key encryption, supplemented by

PBKDF2 and AES-GCM for symmetric

protection of private-key blobs. The system

ensured both confidentiality and authenticity

by combining an elliptic-curve Diffie–Hellman

exchange for secure key derivation with

Poly1305 message authentication codes for

integrity verification. Password-based

protection employed PBKDF2 with HMAC-

SHA256 (100,000 iterations) to derive a secure

key, while AES-GCM provided encryption and

authentication with a 96-bit initialization

vector.

3.0 Results and Discussion

The developed system integrates a

Python/Flask backend with MongoDB and

SQLite for session management and caching,

alongside MetaMask authentication and

elliptic-curve cryptography (ECC) for end-to-

end encryption. Users authenticate by signing a

server-generated nonce through MetaMask,

after which their public keys are registered on

Internet Computer (ICP) canisters. Message

encryption occurs entirely on the client side

using the recipient’s public key, while

encrypted messages and key data are stored

immutably on-chain. RESTful endpoints such

as /login, /registerKey, /sendMessage, and

/fetchMessages coordinate all operations.

Functional testing confirmed that these

endpoints reliably handled valid requests and

returned appropriate error messages for invalid

inputs, thereby validating both reliability and

robustness.

3.1 Performance Analysis

The performance evaluation demonstrates the

system’s real-time suitability and efficiency.

As shown in Fig. 1, key generation using

Curve25519 required an average of 1.10 ms,

while AES-GCM export and import operations

completed in 1.5 ms and 1.8 ms, respectively.

These lightweight cryptographic operations are

crucial for user adoption, as they ensure that

secure workflows introduce no perceptible

latency.

Fig. 2 visualizes how the time taken for

encryption and decryption scales with the size

of the message. provides crucial evidence of

the system's efficiency and scalability. It

demonstrates that the client-side cryptographic

operations are lightweight and maintain low

latency even as the data payload increases. This

is a critical finding for user experience and

enterprise adoption. The plot clearly shows a

linear relationship between message size and

the time required for both encryption and

decryption. This is an expected and positive

result, indicating that the cryptographic

algorithms (Curve25519/XSalsa20-Poly1305)

are efficiently implemented and do not

introduce significant computational overhead.

Based on the plot, at a message length of 0

characters, both encryption and decryption take

approximately 0.5 ms. This baseline time

represents the overhead of setting up the

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 230

cryptographic function calls and is remarkably

low.

The slope of the lines is gradual, showing that

even with a substantial increase in message

length (up to 10,000 characters), the total time

remains well under 2 ms for both operations.

For instance, at 10,000 characters, encryption

takes about 1.9 ms and decryption takes about

1.6 ms. This performance is well within the

threshold for real-time communication, as it's

imperceptible to the average user.

Across all data points, the decryption time is

consistently slightly lower than the encryption

time. This is a common characteristic of

asymmetric encryption schemes. In this case,

the TweetNaCl.js library's implementation may

be optimized such that the process of key

derivation and data decryption is

computationally less intensive than the initial

encryption and authentication tag generation.

This performance analysis confirms that the

choice of client-side cryptography is effective.

By performing these operations locally in the

user's browser, the system offloads

computational work from a central server and

eliminates network latency as a bottleneck for

the encryption process itself. It also reinforces

the system's core design principle:

cryptographic trust and control reside with the

user, without compromising on speed or

usability.

Fig. 1: Histogram representing key generation and AES-GOM exponential time

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 231

Fig. 2: Graph of Encryption and Decryption Time against Data Size

Key generation performance was visualized in

Fig. 2, while encryption and decryption times

against data size are shown in Fig. 3. The

results indicate that Curve25519 keypair

generation via the TweetNaCl library

consistently achieved sub-2 ms performance,

enabling dynamic identity creation without

workflow interruptions. Encryption times

averaged 0.20 ms for 100-character messages,

0.65 ms for 1,000 characters, and 1.80 ms for

longer payloads. Decryption times were

slightly higher but followed a similar trend,

averaging 0.25 ms, 0.70 ms, and 2.00 ms for the

same input sizes. These results confirm that

both the NaCl box operation and Web Crypto

AES-GCM implementations scale linearly with

message size and maintain real-time

responsiveness (see Fig. 3).

Fig. 3:Encryption and decryption time versus message size

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 232

The linear relationship between execution time

and message length indicates efficient handling

of larger payloads without compromising

system responsiveness. Importantly, the

absence of outliers across repeated tests

highlights the stability of the cryptographic

implementation. By ensuring that all critical

operations—including key generation,

encryption, decryption, and key backup—

complete in under a few milliseconds, the

system meets the demands of real-time

communication in Web3 environments. These

findings validate the use of XSalsa20-

Poly1305 for authenticated encryption,

Curve25519 for key provisioning, and AES-

GCM for secure key lifecycle management.

3.2 User Interface Performance

The user interface was evaluated for usability

and robustness. The login and authentication

process, illustrated in Fig. 4, begins when a user

clicks “Connect MetaMask” or connects via

Plug Wallet for ICP Principal-based login.

After signature verification, the application

grants a passwordless session and stores the

authenticated identifier locally. Users who

decline connection remain blocked from

protected features, demonstrating strict

enforcement of access control.

Fig 4: User Login and Authentication

Fig. 5: User Dash-Board

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 233

Following successful authentication, users are

directed to a dashboard (Fig. 5) where they can

generate Curve25519 keypairs through the

TweetNaCl library (Fig. 6). The generated

public key is stored on-chain and tied to the

user’s identity, while the private key is AES-

GCM encrypted under a user-specified

password and stored locally. Export and import

functionalities are illustrated in Fig. 7 and Fig.

8, respectively, ensuring portability of

encrypted key blobs across devices. This

mechanism enables continuity of secure

communication without compromising key

integrity.

Fig. 6. Key generation and lookup

Fig. 7. Exporting private keys with password creation prompt.

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 234

Fig. 8. Importing private keys from encrypted blobs

When sending encrypted messages, users

compose a message in the dashboard, and upon

sending, the client performs a NaCl box

operation with the recipient’s public key,

sender’s private key, and a nonce. The resulting

ciphertext is base64-encoded and transmitted

on-chain (Fig. 9). Upon message reception,

ciphertext payloads appear in the inbox (Fig.

10), and once the private key is unlocked, the

NaCl box.open operation retrieves the plaintext

(Fig. 11). Testing confirmed that valid key

pairs always yielded successful decryption,

while mismatched pairs failed gracefully,

thereby ensuring confidentiality and integrity.

Fig. 9. Messaging dashboard for encryption and sending

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 235

Fig. 10. Received encrypted message in inbox

Fig. 11. Display of decrypted message

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 236

Importantly, round-trip cryptographic

processes—including key generation, message

encryption, transmission, and decryption—

remained under 6 ms even for messages

exceeding 1,000 characters. This latency is

imperceptible to end users and satisfies the

responsiveness required for conversational

applications. Furthermore, AES-GCM-based

key backup and restoration averaged less than

3 ms, ensuring seamless user experience during

key management. Consistency of timings

across multiple tests, with variations under 0.25

ms, underscores the robustness of the system

against browser activity and network jitter.

3.3 Comparative Evaluation

To contextualize system performance, the

proposed framework was compared against

existing email security mechanisms, as

summarized in Table 3. Traditional email

security methods provide low processing times

but remain vulnerable to phishing and

spoofing. PKI and S/MIME offer stronger

cryptographic guarantees but suffer from

scalability limitations due to complex key

management and high resource requirements.

PGP, while cryptographically sound, is

hindered by inefficient revocation processes

and synchronization delays, leading to

widespread usability issues.

Table 3. Comparison of the proposed system with existing email security frameworks

Framework Processing Time Scalability Resource

Consumption

Traditional

Email

Security

Low processing time

but vulnerable to

phishing and spoofing

Highly scalable but lacks

advanced verification

mechanisms

Minimal, but weak

security

PKI and

S/MIME

Moderate processing

time due to

cryptographic

operations

Limited scalability due to

complex key management

High resource

consumption for key

exchange

PGP Inefficient revocation

and synchronization

delays

Only sign or encrypt but

not both simultaneously

Extensive inactive

key servers

Current

System

Optimized processing

with lightweight hash

verification

Highly scalable via

decentralized architecture

without reliance on

cryptocurrency

Low, no complex

cryptographic

management

required

The proposed system demonstrates superior

trade-offs, achieving both optimized

processing times and high scalability due to its

decentralized design. Unlike PKI or PGP, it

eliminates reliance on centralized trust

infrastructures and reduces key management

overhead. Its lightweight cryptographic

processes, executed entirely client-side,

minimize server resource consumption while

preserving strong guarantees of confidentiality,

integrity, and authentication.

4.0 Conclusion

The findings of this study show that the

integration of blockchain technology,

particularly through the Internet Computer

Protocol (ICP), provides a secure and scalable

solution for implementing end-to-end email

encryption. The analysis demonstrates that the

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 237

system ensures confidentiality, integrity, and

authentication of messages by combining

blockchain-based storage, cryptographic key

management, and robust encryption algorithms

such as XSalsa20-Poly1305 and AES GCM.

The workflow, as summarized in Table 2 and

illustrated in Fig. 12, highlights the seamless

integration of login, key management,

encryption, and decryption processes, which

collectively strengthen user data protection

against unauthorized access and potential cyber

threats. The evaluation confirms that the

system improves trust, reduces risks of data

breaches, and enhances transparency in secure

communication compared to conventional

email encryption methods.

5.0 References

Al-Julandani, H. S., & Al-Harthy, K. (2022).

Preventing email phishing using Ethereum

smart contracts. arXiv. https://arxiv.

org/abs/2210.09748

Clark, D., Van Oorschot, P. C., Ruoti, S.,

Seamons, K., & Zappala, D. (2021).

Usability and stakeholder analysis of

secure email systems. IEEE Security &

Privacy, 19(4), 92–100. https://ieeexplore.

ieee.org/document/9333453

Döberl, C., [Additional Authors]. (2023). Post-

quantum cryptography for email:

Integrating Delta Chat with PQ signatures.

In Proceedings of the International

Conference on Blockchain and Post-

Quantum Technologies (pp. 97–105).

Springer. https://link.springer.com/chapter/

10.1007/978-3-031-28241-6_8

Duman, S., Büchler, M., Egele, M., & Kirda, E.

(2023). PellucidAttachment: Protecting

users from attacks via e-mail attachments.

arXiv. https://arxiv.org/abs/2304.00105

Hossain, M. B., Rahayu, M., Ali, M. A., Huda,

S., Kodera, Y., & Nogami, Y. (2023). A

smart contract based blockchain approach

integrated with elliptic curve cryptography

for secure email application. In 2023

Eleventh International Symposium on

Computing and Networking Workshops

(CANDARW) (pp. 195–201). IEEE.

https://doi.org/10.1109/CANDARW57484

.2023.00118

Knodel, M., Hoyos, R., & Smalley, D. (2023).

Security features and pitfalls in end-to-end

email encryption systems. arXiv.

https://arxiv.org/abs/2302.03718

Pandeeswari, M. R., & Kumar, S. (2024).

Smart contract–driven email authentication

for secure communication. In Secure

Computing and Communications (Vol. 15,

pp. 220–234). Springer. https://link.

springer.com/chapter/10.1007/978-981-

99-2955-3_15

Petcu, A., Pahontu, B., Frunzete, M., &

Stoichescu, D. A. (2023). A Secure and

Decentralized Authentication Mechanism

Based on Web 3.0 and Ethereum

Blockchain Technology. Applied

Sciences, 13(4), 2231.

https://doi.org/10.3390/app13042231.

Polozhiy, G., & Boldyrikhin, N. (2022).

Performance evaluation of secure key

exchange protocols in enterprise email

systems. ResearchGate. https://www.

researchgate.net/publication/366176792

Rachad, A., Gaiz, L., Bouragba, K., & Ouzzif,

M. (2024). Smart-contract-based email

storage for privacy and traceability. In

Advanced Information and Communication

Technology (Vol. 640, pp. 90–102).

Springer. https://link.springer.com/chapter/

10.1007/978-3-031-45341-0_7

Shen, Y. (2021). A hybrid PGP and Diffie–

Hellman scheme for secure email

communication. In Proceedings of the

IEEE International Conference on

Communications. IEEE. https://ieeexplore.

ieee.org/document/9470124

Singh, R., Chauhan, A. N. S., & Tewari, H.

(2023). Blockchain-based messaging audit

with telco-issued certificates. IEEE Access,

https://link.springer.com/chapter/%2010.1007/978-3-031-28241-6_8
https://link.springer.com/chapter/%2010.1007/978-3-031-28241-6_8
https://arxiv.org/abs/2304.00105
https://doi.org/10.1109/CANDARW57484.2023.00118
https://doi.org/10.1109/CANDARW57484.2023.00118
https://arxiv.org/abs/2302.03718
https://doi.org/10.3390/app13042231
https://link.springer.com/chapter/%2010.1007/978-3-031-45341-0_7
https://link.springer.com/chapter/%2010.1007/978-3-031-45341-0_7

Applied Sciences, Computing and Energy, 2025, 3(2), 224-238 238

11, 34567–34578. https://ieeexplore.ieee.

org/document/10233597

Xu, D., Wu, F., Zhu, L., Li, R., Gao, J., & She,

Y. (2022). BUES: Blockchain-backed

email hash logging for enterprise

surveillance. IEEE Access, 10, 123456–

123467.

https://ieeexplore.ieee.org/document/9743

503

Declaration:

Ethical Approval

Not applicable

Competing interests

There are no known financial competing

interests to disclose

Funding: There was no external financial

sponsorship for this study

Availability of data and materials: The data

supporting the findings of this study can be

obtained from the corresponding author upon

request

Authors’ Contributions

Okoli Kosisochukwu Juliet contributed to

system design, algorithm integration,

manuscript drafting, and overall coordination

of the research. Ilo S. F. focused on theoretical

framework development, blockchain

implementation, and validation of

cryptographic models. Azubuike Aniedu

handled system architecture, experimental

simulations, result analysis, and assisted in

final manuscript review and editing.

.

https://ieeexplore.ieee.org/document/9743503
https://ieeexplore.ieee.org/document/9743503

