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Abstract: The overwhelming sophistication of 

cyber-attacks requires state-of-the-art intrusion 

detection systems (IDS) that can dynamically 

handle the high-dimensional and mixed-type 

system data in real-time [17]. In this paper, we 

propose PCAmix-KPCA and Random forest 

Intrusion Detection System (PKRIDS), which is 

a real-time Host-based IDS (HIDS) that 

incorporates PCAmix to transform mixed 

attributes of numerical and categorical features, 

KPCA for nonlinear principal component 

projection and a Random Forest classifier for 

strong anomaly detection PKRIDS continuously 

monitors system-level metrics such as CPU 

usage, memory consumption, login activity, and 

network behavior through a modular data 

pipeline. Analysed features are transformed and 

the anomaly scores are calculated and 

dynamically evaluated by the 3-sigma statistical 

thresholding rule. Built using Python and 

deployed using Streamlit, PKRIDS offers an 

interactive dashboard for real-time monitoring, 

alerting, manual model retraining, as well as 

data export. The performance of PKRIDS on 

benchmark datasets (NSL-KDD and TON_IoT) 

and in a real Windows environment 

demonstrated accuracy of more than 98%, F1-

scores above 0.95, false positive rates of Its 

modular design and real-time adaptivity enable 

PKRIDS to be a viable solution as an advanced 

and scalable host-level cybersecurity. 
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1.0 Introduction 
 

Cybersecurity has become a fundamental 

concern across public and private sectors due to 

the growing frequency, sophistication, and 

impact of cyberattacks. These attacks 

increasingly exploit vulnerabilities not only at 

the network level but also within host systems—

making host-level protection a priority in 

modern security architectures (Liao et al., 2013; 

Ahmad et al., 2021). While Network-Based 

Intrusion Detection Systems (NIDS) provide 

substantial defense against external threats, they 
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often fall short in detecting internal or host-

originated anomalies, especially advanced 

persistent threats and zero-day attacks 

(Caltagirone et al., 2013). In contrast, Host-

Based Intrusion Detection Systems (HIDS) offer 

more granular visibility into system behavior, 

including process activity, login attempts, and 

system resource usage (Ahmim et al., 2018). 

Traditional HIDS often struggle with effectively 

processing high-dimensional, mixed-type data 

(i.e., categorical and numerical variables) and 

adapting to nonlinear behavioral patterns 

common in modern host environments (Mo et 

al., 2021; Muhammad Ahsan et al., 2022). 

Although machine learning and statistical 

learning models have been explored for 

intrusion detection, many proposed solutions are 

either not optimized for mixed-type data or are 

computationally intensive, limiting their 

usability in real-time applications (Mohale & 

Obagbuwa, 2025; Almolhis, 2025). 

Previous studies have demonstrated the 

potential of combining Principal Component 

Analysis (PCA) with classification techniques 

like Random Forests to enhance detection 

accuracy (Shaohui et al., 2021; Subhadeep, 

2023). However, few have explored the 

integration of PCAmix—a method designed to 

jointly analyze categorical and numerical data—

with Kernel PCA (KPCA) for nonlinear 

dimensionality reduction in real-time HIDS 

applications. This gap underscores the need for 

adaptive, efficient, and scalable models capable 

of handling heterogeneous data streams at the 

host level (Erik et al., 2024). 

This study addresses the above gaps by 

proposing a novel hybrid system named 

PKRIDS (PCAmix-KPCA-Random Forest 

Intrusion Detection System). PKRIDS leverages 

PCAmix for transforming mixed-attribute 

features, KPCA for capturing complex, 

nonlinear data structures, and Random Forest 

for robust anomaly classification. The model is 

implemented as a modular Python application 

with an interactive dashboard using Streamlit 

for real-time monitoring, alerting, and data 

export. 

The aim of this research is to develop and 

evaluate a real-time, host-based intrusion 

detection system that overcomes the limitations 

of existing HIDS by integrating advanced 

feature transformation techniques and scalable 

machine learning algorithms. 

The significance of this study lies in its 

contribution to operational cybersecurity: 

PKRIDS demonstrates a practical, deployable 

solution that achieves high detection accuracy 

(>98%), low false positive rates (<1%), and fast 

response times (~4.2 seconds), all of which are 

critical for modern threat environments. 

Additionally, by validating the system on 

benchmark datasets (NSL-KDD and TON_IoT) 

and in a real Windows environment, the study 

offers strong evidence of PKRIDS’s utility in 

both academic and industrial settings. 
 

2.0 Materials and Methods 
 

The PKRIDS framework combines statistical 

and machine learning techniques to address the 

challenges of anomaly detection in mixed-type 

system data.  

2.1 System Design of PKRIDS 

The architecture ensures that each component 

handles a distinct functionality-system metrics 

collection, feature transformation, anomaly 

detection, and real-time visualization. 

 The system architecture consists of several 

interconnected layers including the following 

(i) System Metrics Collection Layer: 

Utilizes tools such as psutil and 

win32evtlog to collect real-time statistics 

on CPU usage, memory utilization, 

active processes, network traffic, and 

failed login attempts. The data is 

collected at configurable intervals and 

converted into structured time-series 

formats. 

(ii) Preprocessing Layer: Applies PCAmix 

on categorical variables (e.g., event 

types, user privileges) and KPCA on 

numerical features (e.g., CPU %, 
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memory load, network packets). The 

results are fused into a low-dimensional 

feature space that captures both linear 

and nonlinear interactions. 

(iii)Machine Learning Layer: A Random 

Forest classifier is used to detect 

anomalous system behavior. Model 

training involved 1000 estimators with a 

maximum tree depth of 10. Balanced 

class weights were applied to mitigate 

class imbalance in the training data. 

(iv) Decision Layer: PKRIDS calculates an 

anomaly score for each observation and 

uses a statistical 3-sigma thresholding 

technique to identify outliers. This 

dynamic threshold adapts over time as 

system behavior evolves. 

(v) Alerting and Logging Layer: Alerts are 

generated as desktop notifications or 

emails using plyer and smtplib, 

respectively. All events (normal or 

anomalous) are logged with timestamps, 

anomaly scores, and classification 

outcomes. 

(vi) User Interface Layer: Streamlit is used 

to develop an interactive dashboard 

comprising real-time anomaly gauges, 

historical trends, live event logs, and 

model control panels. 

A flowchart summarizing the system design is 

illustrated in Fig.  1 

 
 Fig. 1: Flowchart of the PKRIDS System Design  

 

 
 



Applied Sciences, Computing and Energy, 2025, 3(1), 124-133 127 
 

    

2.2 System Implementation and Testing 
 

This section provides insight into the 

environment setup, deployment process, and 

testing approach adopted for the PKRIDS 

system on a local workstation. To evaluate the 

system's functionality, dependability, and 

detection performance, it was put into use on a 

local workstation and put through real-world 

testing. To assess how precisely and quickly 

the system could identify intrusions, the 

testing environment replicated normal system 

activities and deliberately created anomalies. 

In order to accurately simulate real-world 

usage scenarios where system metrics are 

continuously tracked, processed, and 

categorized without user participation, real-

time testing was selected.  
 

2.2.1 Software Environment 
 

A carefully chosen mix of technologies was 

used to create the Python-based Kernel 

Random Forest Intrusion Detection System 

(PKRIDS) in order to guarantee effectiveness, 

scalability, and reproducibility. We go into 

each component's technical justification 

below: 

1. Programming Language: Python 3.10 

Python was chosen due to its extensive 

ecosystem for data science, machine learning, 

and systems monitoring [8][9].  

2.  Libraries and Frameworks 

i. Streamlit was selected for its rapid 

prototyping capabilities and interactive 

dashboard features. 

ii. Psutil and win32evtlog for system 

monitoring 

iii. Scikit-learn for machine learning (Random 

Forest, Kernel PCA) 

iv. Prince for PCAmix transformation 

v. Joblib for model persistence 

vi. Plotly for real-time visualizations 

vii. Smtplib for sending email alerts 

The system was developed and tested in a 

Windows 10 environment. 

2.3 Model Training and Anomaly 

Detection 

The Random Forest classifier is trained on the 

combined PCAmix-KPCA features. Key 

training parameters include: 

• 1000 decision trees 

(n_estimators=1000) 

• Maximum depth limited to 10 

(max_depth=10) 

• Balanced class weights to handle 

imbalanced datasets 

During monitoring, the system computes an 

anomaly probability score for each new 

observation. A dynamic threshold, calculated  

    (1) 

With   representing the mean and  the 

standard deviation of recent scores, determines 

whether an observation is classified as an 

anomaly. 
 

 

3.0 Implementation of Results and 

Discussion 
 

 

PKRIDS was evaluated in two stages: live 

deployment in a Windows environment and 

offline simulation using benchmark datasets 

(NSL-KDD and TON_IoT). 
 

3.1 Offline Evaluation 
 

The system was tested on pre-processed NSL-

KDD and TON_IoT datasets, with features 

selected using Information Gain, Gain Ratio, 

and Correlation. The Random Forest model 

was trained with 1000 estimators and a 

maximum depth of 10. Performance metrics 

are summarized in Table 1. 

 

Table 1: Offline Evaluation Performance Metrics Dataset Accuracy Precision Recall F1-score 

AUC 
 

NSL-KDD 98.3%            97.9% 98.5% 98.1%  0.99 

TON_IoT 98.7% 98.6% 98.5% 98.6% 0.99 
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These performance metrics clearly illustrate 

the effectiveness of the proposed hybrid 

feature transformation approach - integrating 

PCAmix, Kernel PCA, and Random Forest - 

in enhancing the detection accuracy of the 

intrusion detection system across diverse 

categories of cyberattacks. The success of this 

transformation pipeline lies in its ability to 

efficiently capture both linear and nonlinear 

patterns from high-dimensional, mixed-type 

data, enabling more precise classification of 

anomalous and normal system behaviors. 

A further analysis was conducted to evaluate 

the impact of different feature selection 

strategies on model performance. Three 

prominent feature selection techniques-

Information Gain, Gain Ratio, and 

Correlation-were compared in terms of their 

contributions to model accuracy, the area 

under the receiver operating characteristic 

curve (ROC-AUC), and the root mean square 

error (RMSE). Among the three methods, 

Information Gain demonstrated superior 

performance by achieving the highest ROC-

AUC values and the lowest RMSE, even when 

using a smaller subset of features (ranging 

from 17 to 18). This indicates that Information 

Gain is highly effective at identifying the most 

informative attributes that contribute 

significantly to anomaly detection, thereby 

improving both detection accuracy and 

computational efficiency. 

Gain Ratio, while slightly less effective than 

Information Gain, still performed better than 

the Correlation-based method in terms of 

RMSE. This suggests that Gain Ratio provides 

a balanced measure that considers both the 

information content and the intrinsic bias of 

features. On the other hand, the Correlation 

method, although useful for identifying linear 

relationships between features, was less 

capable of capturing the nonlinear 

dependencies relevant for robust intrusion 

detection. 

Overall, the comparative evaluation 

underscores the importance of selecting an 

appropriate feature selection method as a 

foundational step in optimizing intrusion 

detection models, especially when dealing 

with heterogeneous and high-dimensional 

datasets. 

 

Table 2: Feature Selection Comparison 

 

Algorithm ROC RMSE  Feature Range 

Correlation 0.993 0.1465  17–25 

Gain Ratio 0.997 0.1243  21–26 

Information Gain 0.998 0.1288  17–18 
 

3.2 Live Deployment 
 

To assess its real-world applicability and 

performance, the PKRIDS system was 

deployed and evaluated in a live Windows 10 

environment under both normal and 

adversarial operating conditions. The normal 

operations included routine system activities 

such as web browsing, file transfers, and 

application launches, which were monitored to 

establish a baseline for system behavior. To 

simulate real-world threats, a series of 

controlled attack scenarios were deliberately  

introduced to test the system's ability to detect 

and respond to anomalous behavior. 

The synthetic attack simulations were 

carefully crafted to mimic common intrusion 

patterns encountered in host environments. 

These included repeated failed login attempts 

designed to emulate brute-force attacks, port 

scanning activities executed using the Nmap 

tool to replicate reconnaissance behavior, CPU 

overload scenarios generated through synthetic 

scripts to simulate denial-of-service 

conditions, and abnormal data transfers that 

mimicked exfiltration or malware-related 

network anomalies. These scenarios were 
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selected to represent a range of threat vectors 

that are typical in both enterprise and personal 

computing environments. 

Under these conditions, PKRIDS 

demonstrated exceptional detection 

performance, achieving a detection accuracy 

of 99.3%, as validated against known 

simulated anomalies. The system also 

maintained a false positive rate of less than 

1%, indicating its ability to minimize 

erroneous alerts and avoid misclassification of 

benign system activities. Moreover, the 

response time from anomaly detection to alert 

display was recorded at an average of 4.2 

seconds, reflecting the system’s capability for 

near real-time detection and user notification. 

These results underscore PKRIDS’s 

robustness, reliability, and responsiveness as a 

practical host-based intrusion detection 

solution in live environments. 
 

3.3 Application Interface Design 
 

The user interface of the PKRIDS system was 

developed using the Streamlit library in 

Python, a choice made to facilitate the creation 

of a responsive, interactive, and user-friendly 

dashboard tailored to real-time cybersecurity 

monitoring. The interface was designed with a 

focus on usability and clarity, ensuring that 

users can easily interpret system feedback and 

take appropriate actions. 

Among the core functionalities of the 

dashboard is the real-time anomaly score 

gauge, which displays the current anomaly 

score and provides an immediate visual 

representation of the system’s security status. 

This is complemented by historical anomaly 

trend visualizations, presented as line charts 

that show how anomaly scores evolve over 

time, thereby aiding in the detection of 

emerging threats or sustained unusual 

behaviors. 

The dashboard also features a live event 

logging component, which presents a 

continuously updating table of recently 

detected events, including timestamps, 

anomaly classifications, and alert statuses. 

This allows for immediate auditing and 

facilitates rapid decision-making. To enhance 

adaptability, the interface includes a model 

retraining control, which enables users to 

update the detection model using newly 

collected system data without interrupting 

operations. 

In addition, users are provided with an alert 

configuration panel through which they can 

enable or disable notifications via desktop 

alerts or email, depending on their operational 

preferences. The entire dashboard is 

configured to refresh automatically every five 

seconds, ensuring continuous visibility into 

system conditions and supporting near-

instantaneous response to anomalies. 
 

3.3.1 Dashboard Screenshots 
 

To support proactive supervision and 

operational clarity, the PKRIDS dashboard 

offers real-time monitoring capabilities 

alongside trend visualization, anomaly 

detection, and alert management tools. The 

full interface layout is depicted in Figure 2, 

which presents a comprehensive overview of 

all integrated components. Subsequent figures 

provide focused views of individual modules, 

each of which has been developed to enhance 

the effectiveness and usability of the intrusion 

detection system. 

 
Figure 2: Full View of PKRIDS Dashboard 

Interface 
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Figure 3: Real-time Anomaly Score Gauge 

 

The PKRIDS real-time anomaly score gauge 

visually indicates system health, with higher 

scores signaling greater anomaly likelihood.  

 
Figure 4: Historical Anomaly Trends 

Graph 

A temporal analysis of system behaviour is 

provided by Figure 4, which plots anomaly 

scores over time to show historical trends. 

With the help of this visualisation, users can 

identify trends, sudden spikes in activity (like 

possible intrusion attempts), or slow changes 

in activity (like ongoing threats). The graph 

facilitates proactive threat mitigation, trend 

analysis, and incident triage by linking 

anomalies with timestamps. 

 

Figure 5: Manual Model Retraining 

Control Panel 

The dashboard enables on-demand model 

retraining with new data, allowing continuous 

adaptation without system restarts. 

 

Figure 6: Data Collection 
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The Data Collection and Management Panel 

within the PKRIDS interface, as shown in Fig. 

6, plays a vital role in configuring and 

managing the logging of system metrics 

essential for both anomaly detection and 

model retraining. It allows users to enable or 

disable the data collection mode, which 

governs the real-time recording of vital 

information such as system metrics, anomaly 

predictions, and computed anomaly scores. 

This functionality ensures that the system 

continuously captures relevant operational 

data needed for analysis and improvement of 

the detection model. 

The panel also displays the current state of the 

system-indicating whether it is functioning 

normally or under attack-based on the latest 

anomaly detection results. This real-time 

feedback helps users monitor the security 

condition of the host system at a glance. 

In addition, the collection interval setting 

allows users to define how frequently data is 

recorded, measured in seconds. Adjusting this 

interval helps balance data granularity and 

system performance, enabling either high-

resolution tracking for detailed analysis or 

lower-frequency logging to conserve 

resources. 

The panel further includes controls to start or 

stop data collection sessions manually, giving 

users the flexibility to manage when data 

should be logged based on operational needs 

or testing conditions. Within the panel is a 

collapsible data management section that 

provides tools for maintaining the quality of 

the collected dataset. Users can validate 

entries for accuracy, repair corrupted or 

incomplete logs, and delete obsolete or 

unnecessary data. 

To support external analysis or archival needs, 

the panel also offers an export feature. This 

allows users to download collected data in 

commonly used formats such as .csv or .xlsx, 

making it easy to integrate PKRIDS output 

with other data processing, reporting, or 

visualization tools. This comprehensive data 

handling capability ensures that the system 

remains adaptable, traceable, and effective in 

supporting both immediate anomaly detection 

and longer-term analytical goals. 

 

Figure 7: System Configuration and 

Monitoring Panel 
 

Located on the right side of the PKRIDS 

dashboard, the system configuration and 

monitoring panel serves as a centralized hub 

for adjusting monitoring parameters, 

configuring alerts, and tracking system health 

metrics in real time. This panel is divided into 

four functional sections, each supporting a 

specific aspect of the intrusion detection 

process. 
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The first section, dedicated to configuration, 

allows users to customize how anomaly alerts 

are delivered. Users can select their preferred 

method of notification-either desktop alerts, 

email notifications, or both-depending on 

operational convenience and the criticality of 

the environment. This section also includes a 

base detection threshold setting, which 

features a sensitivity slider that ranges from 

0.10 to 1.0. This adjustable threshold enables 

users to fine-tune the sensitivity of the 

anomaly detection model, striking a balance 

between false positives and detection accuracy 

based on the system’s behavioral profile. 

The second section, labeled controls, provides 

a toggle switch that activates or deactivates 

real-time monitoring. This feature is 

particularly useful during system maintenance 

or data collection phases when anomaly 

detection may need to be paused without 

shutting down the entire application. 

The third section displays the system’s 

monitoring status. It indicates whether real-

time detection is currently active and shows 

the most recent anomaly score, along with a 

calculated average over the previous ten 

seconds. This immediate feedback helps users 

assess short-term trends and react quickly to 

any deviations from normal system behavior. 

The final section focuses on system health and 

performance. It provides real-time metrics on 

CPU and memory usage, allowing users to 

monitor the resource impact of the PKRIDS 

system. Additionally, it offers insights into 

network and process activity, such as traffic 

levels, active connections, and system load. 

These metrics are essential for correlating 

anomalous events with underlying resource 

patterns or operational changes. 

Altogether, this panel empowers users to 

proactively manage detection sensitivity, 

receive timely alerts, and maintain visibility 

over both security and system performance 

conditions in a single, integrated interface. 

 

 

4.0 Conclusion 

This study introduces PKRIDS, a hybrid Host-

Based Intrusion Detection System that 

integrates PCAmix for handling mixed-type 

data, Kernel Principal Component Analysis 

(KPCA) for nonlinear dimensionality 

reduction, and Random Forest for robust 

classification. Through comprehensive 

evaluation using benchmark datasets such as 

NSL-KDD and TON_IoT, as well as 

deployment in a real-time Windows 

environment, PKRIDS consistently 

demonstrated high detection accuracy 

exceeding 98%, minimal false positive rates, 

and swift anomaly response times. The 

system’s Streamlit-powered dashboard offers 

an intuitive and interactive platform for real-

time monitoring, model retraining, and alert 

management, making it practical for 

operational cybersecurity use. Looking ahead, 

future enhancements could involve the 

incorporation of network-level metrics, the 

integration of deep learning architectures, and 

the implementation of adaptive learning 

techniques to further improve detection 

performance and system scalability. 
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