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Abstract: Accurate rainfall-runoff modeling is 

essential for sustainable water management, 

especially in flood-prone, data-scarce regions 

like Nigeria’s Bida Basin. Traditional models 

struggle with nonlinear hydrological dynamics 

and limited data availability. This study 

addresses this gap by developing and 

evaluating an ANN-based runoff prediction 

model using limited meteorological and 

hydrological data. The objective is to improve 

flow forecasting accuracy and demonstrate the 

effectiveness of data-driven approaches for 

climate-resilient water resource planning in 

under-monitored basins. Daily rainfall, 

temperature, and runoff data (2010–2023), 

data were preprocessed, normalized, and 

partitioned for ANN modeling. A multi-layer 

ANN was trained using the Adam optimizer and 

evaluated with RMSE, R², and NSE. The 

Activation functions (LOGSIG, PURELIN, 

TANSIG) were tested to assess model accuracy 

in simulating runoff under nonlinear rainfall-

runoff relationships. The ANN model achieved 

strong runoff prediction performance in the 

Bida Basin, with R² values of 0.91 (training) 

and 0.87 (testing), and RMSE of 3.25 and 

4.18 m³/s, respectively. PURELIN activation 

yielded perfect correlation (R = 1.0; RMSE = 

0.0), outperforming LOGSIG (R = 0.9995) and 

TANSIG (R = 0.9547). Seasonal analysis 

showed higher accuracy in the wet season (R² 

= 0.89; RMSE = 3.90 m³/s) than in the dry 

season (R² = 0.77; RMSE = 4.65 m³/s), 

confirming the model’s robustness across 

hydrological conditions. ANN models 

outperform traditional MLR in capturing 

nonlinear runoff dynamics but risk overfitting 

without careful tuning, while linear regression 

excels in simple linear cases, highlighting the 

need to balance model complexity and 

generalization based on data and process 

characteristics. 
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1.0 Introduction 
 

Rainfall–runoff forecasting constitutes a 

fundamental component of sustainable water 

resource management, as it provides critical 

insights for optimizing reservoir operations, 

refining irrigation scheduling, and enhancing 

flood warning systems (Kumar et al., 2024; 

Mayaki et al., 2023). The precision of 

streamflow predictions is of paramount 

importance for the effective allocation and 

strategic planning of water resources. In 

numerous regions of Nigeria, rainfall serves as 

the principal source of water for both 

agricultural and domestic applications. For 

instance, the fertile floodplains of the Bida 

basin are conducive to the cultivation of rice, 
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sugar, and various staple crops, thereby 

rendering local food security significantly 

reliant on rainfall variability. Recent years have 

witnessed an increase in the frequency of 

extreme hydrological events: the year 2022 

experienced the most severe flooding since 

2012 in Nigeria, resulting in the displacement 

of over a million individuals. Such fluctuations 

in precipitation patterns highlight the critical 

necessity for dependable runoff predictions to 

effectively manage the dual challenges of 

droughts and floods, as well as to ensure 

adequate water supply amidst the pressures of 

climate change and escalating demand. 

Conventional rainfall–runoff models, whether 

empirical, conceptual, or physical, frequently 

encounter challenges associated with the 

inherent nonlinearity and complexity of the 

hydrological system. By condensing a variety 

of catchment processes into simplified 

reservoir representations, these models 

necessitate extensive calibration and may 

inadequately represent atypical hydrological 

phenomena. As noted in a recent review, “the 

process of rainfall–runoff is highly nonlinear 

and incredibly complex and is still poorly 

understood.” Many traditional models require 

long-term, high-quality datasets for calibration, 

rendering them computationally intensive and 

less robust in the face of shifting climatic 

conditions (Mohseni and Muskula, 2023). 

Indeed, Rudisillet al. (2023) demonstrate that 

prevalent “bucket”-type models are incapable 

of accurately replicating multi-year 

groundwater trends during extended drought 

periods, indicating suboptimal performance in 

non-stationary climatic contexts. These 

constraints catalyze the pursuit of alternative, 

data-driven methodologies that can adeptly 

learn the intricate relationships inherent in 

rainfall–runoff dynamics without the 

imposition of stringent physical assumptions. 

Machine learning techniques—particularly 

Artificial Neural Networks (ANNs)—have 

gained significant traction in hydrological 

modeling due to their ability to approximate 

complex nonlinear functions (Oforduet al., 

2024; Orji et al., 2023). ANNs operate as data-

driven “black-box” models inspired by the 

structure and functioning of the human brain, 

enabling them to learn input–output 

relationships (e.g., rainfall to runoff) without 

relying on explicit physical equations. Over the 

past few decades, ANNs have been widely 

adopted in hydrology, often outperforming 

traditional models, especially in data-scarce 

environments. For instance, in a major 

Ethiopian catchment, ANN-based simulations 

yielded runoff estimates comparable to those 

produced by a distributed hydrological model, 

underscoring their reliability even with limited 

data records. Similarly, Kumar et al. (2024) 

demonstrated that a hybrid model combining a 

physical hydrological model with an ANN 

significantly improved streamflow forecasting 

in India. These findings affirm the superior 

capacity of ANNs to capture the nonlinear 

dynamics inherent in rainfall–runoff processes, 

particularly where conventional approaches 

may fall short. Consequently, ANN-based 

models have become increasingly prominent in 

water resources research, with applications 

ranging from flood forecasting and 

groundwater prediction to reservoir operations 

and management (Jougla and Leconte, 2022). 

In the African context, ANNs have been 

applied to enhance hydrological modeling 

efforts. For example, in the Mono River Basin 

(Benin–Togo), Biao et al. (2024) noted that 

complex reservoir operations exacerbate 

rainfall–runoff nonlinearity, yet few studies 

have employed ANN models in the region. In 

Nigeria, Ayodele and Eromosele (2019) 

successfully applied an ANN model to predict 

seasonal rainfall in Lagos, further 

demonstrating the model's potential in West 

African basins. While ANNs have 

demonstrated notable success in simulating 

complex hydrological processes, their 

performance is not universally superior under 

all conditions. Several studies have shown that 

ANN accuracy can be highly sensitive to the 
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quantity, quality, and representativeness of 

input data, as well as to the choice of network 

architecture and training parameters. For 

instance, Dawson and Wilby (2001) reported 

that ANN models tended to overfit when 

trained on short or noisy hydrological records, 

leading to reduced generalization on 

independent datasets. Similarly, Jain and 

Kumar (2007) found that in basins with simple 

and predominantly linear rainfall–runoff 

relationships, multiple linear regression (MLR) 

models performed comparably to or better than 

ANNs, suggesting that increased model 

complexity does not always yield improved 

predictive skill. Kisi and Shiri (2011) observed 

that ANN performance degraded in arid and 

semi-arid catchments where sparse rainfall data 

and high evapotranspiration introduced 

significant uncertainty. Furthermore, Abrahart 

and See (2007) emphasized that while ANNs 

excel at pattern recognition, they can produce 

unrealistic predictions outside the range of 

training data, which can be problematic in non-

stationary climatic contexts. These mixed 

results highlight that the choice of ANN for 

rainfall–runoff modeling should consider not 

only the nonlinearity of the hydrological 

system but also data availability, quality, and 

the need for robust model validation. 

Building upon these insights, the present study 

develops an ANN-based rainfall–runoff model 

for the under-monitored Bida Basin in Nigeria. 

The primary objective is to enhance sustainable 

water resource management through improved 

flow prediction. This study introduces a data-

driven modeling framework tailored to a basin 

with sparse historical records and evaluates the 

performance of ANN models relative to 

traditional hydrological methods. The research 

involves the collection and preprocessing of 

meteorological and streamflow data, the design 

and training of various ANN configurations, 

and rigorous validation against independent 

datasets. By benchmarking the ANN models 

against conventional approaches, this study 

aims to assess predictive improvements and 

highlight the potential of machine learning for 

application in data-limited regions. The 

anticipated outcomes emphasize the utility of 

ANN-based models in advancing rainfall–

runoff forecasting and informing strategic 

water management, particularly for flood 

control and planning in climate-sensitive 

regions such as West Africa. While numerous 

studies have demonstrated the high predictive 

accuracy of Artificial Neural Networks 

(ANNs) in hydrological modeling, it is 

important to note that their performance is 

highly dependent on the quality and quantity of 

input data, the appropriateness of model tuning 

(e.g., choice of architecture and 

hyperparameters), and the specific application 

context. Poor data quality or inadequate 

calibration can lead to over-fitting or reduced 

predictive power, making careful pre-

processing and model validation essential. 
 

2. 0 Material and Methods 

2.1.  Study Area 
 

The Bida watershed, located in the central 

region of Nigeria within Niger State, 

encompasses an approximate area of 37.5 km2 

and constitutes an essential component of the 

expansive Niger Valley region. 

Geographically, it is situated between the 

latitudinal coordinates of 9°0′ and 9°9′ North 

and the longitudinal coordinates of 5°56′ and 

6°4′ East. The watershed's primary 

hydrological features comprise the Musa, 

Landzun, and Chiken Rivers, with the Landzun 

Stream extending 8.86 km, flowing in a west-

to-east trajectory through the urban locality of 

Bida. From a topographical standpoint, the 

watershed is distinguished by a rolling 

landscape characterized by elevation gradients 

ranging from 161 to 277 meters. Geologically, 

it is constituted of Precambrian Basement 

Complex lithologies in conjunction with 

Cretaceous sedimentary deposits, particularly 

the Bida Sandstone and Enagi Siltstone, which 

collectively facilitate a diversity of soil 

typologies, including coarse sand, clay, and 

sandy silt. The occurrence of sandy and clay-
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rich soils substantially augments the potential 

for groundwater retention (Olabode, 2016) 

The region is classified within the northern 

Guinea Savannah ecological zone, which is 

predominantly typified by the presence of 

Isoberlinadoka and Isoberlinatomentosa 

species. Anthropogenic influences have 

modified the original topography, resulting in 

the proliferation of diverse vegetation types, 

including tree savanna, shrub savanna, riparian 

forest, and inselberg flora. The watershed 

experiences pronounced seasonal variations, 

with distinct wet (April–October) and dry 

(November–March) seasons. Annual 

precipitation levels exhibit fluctuations 

between 1,000 and 1,200 mm, with the peak of 

rainfall occurring in the months of August and 

September (Mohammed, 2014). Temperature 

ranges vary between 16  and 37 °C, influenced 

by climatic patterns originating from southwest 

trade winds during the rainy season and 

northeast harmattan winds during the dry 

period (Echebima& Obafemi, 2023).  

 

 
Fig. 1: Sketch geological map of Nigeria showing the location of the Bida Basin 

Source: Idris-Nda et al., (2013) 
 

As shown in Figure 1, rainfall patterns during 

the calibration period exhibited distinct 

seasonal variability, with runoff within the 

watershed primarily governed by precipitation. 

Heightened flow rates were recorded during the 

wet season (Rivera Waterman et al., 2022). 

However, ongoing deforestation and 

urbanization are altering the dynamics of 

infiltration and evapotranspiration, which may, 

over time, lead to a decline in runoff trends. 

These changes underscore the urgent need for 

effective watershed management practices to 

safeguard hydrological balance and ensure 

long-term environmental sustainability. 
 

2.2.  Data Collection 

2.2.1.  Sources of Meteorological and 

Hydrological Data 
 

Meteorological data, primarily daily rainfall 

and temperature records from 2010 to 2023, 

were obtained from the Nigerian 
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Meteorological Agency (NiMet) and 

supplemented with satellite-based data. The 

hydrological data, representing stream flow 

(runoff), were extracted from the uploaded 

dataset based on years of rainfall records 

aligned with observed discharge. 

Parameters Used 

The key parameters utilized in the modeling 

process include: 

Rainfall (mm): Main input for runoff 

generation 

Runoff (m³/s): Model output (target 

variable) 

Time Variables: Day/month used to 

incorporate seasonal behavior 
 

2.2.2   Data Preprocessing 
 

Data Cleaning and Quality Checks 

The raw dataset was thoroughly cleaned by: 

● Removing redundant headers and 

unnamed columns 

● Converting all rainfall data columns 

(2010–2023) into numeric format 

● Dropping columns with excessive 

missing values 

● Aligning time-series data for rainfall 

and runoff 

Normalization and Dataset Partitioning 

Data were normalized using min-max scaling 

to enhance ANN learning efficiency: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

The dataset was then split into: 

Training set: 70% 

Validation set: 15% 

Testing set: 15% 

2.2.3  Model Design 

Overview of Artificial Neural Networks 

(ANNs) 

ANN is a data-driven model composed of 

layers of neurons (nodes) that learn nonlinear 

input-output relationships. It mimics human 

brain functionality, especially useful in systems 

where explicit physical modeling is difficult. 

ANN Architecture Used 

The selected ANN structure consisted of: 

● Input Layer: Neurons equal to the 

number of features (e.g., 14 rainfall 

years) 

● Hidden Layers: 

● Layer 1: 64 neurons with ReLU 

activation 

● Layer 2: 32 neurons with ReLU 

activation 

● Output Layer: 1 neuron with linear 

activation (PURELIN) 

Training Algorithms 

The model was trained using the Adam 

optimizer with Mean Squared Error (MSE) as 

the loss function. Alternative activation 

functions like LOGSIG and TANSIG were also 

tested to compare model responses. 

Evaluation Metrics 

Model performance was evaluated using: 

1. Root Mean Square Error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 −  𝑂𝑖)2

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑖𝑎𝑛𝑑 𝑂𝑖 are predicted and 

observed runoff values respectively 

 

2. Coefficient of Determination (R²) 

𝑅2 = 1 −  
∑ (𝑂𝑖 −  𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − ō )2𝑛
𝑖=1

 

where Ō =  mean of observed values. 

 

3. Nash–Sutcliffe Efficiency (NSE) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 −  Ō)2𝑛
𝑖=1

 

These metrics helped quantify how closely the 

model predictions aligned with the observed 

runoff data. 

Artificial Neural Networks (ANNs) were 

selected for their ability to model complex, 

nonlinear rainfall–runoff relationships without 

requiring detailed physical equations, making 

them ideal for data-scarce regions like Bida. 
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Their adaptability and proven accuracy in 

similar hydrological studies further justify their 

use. However, limitations include the exclusion 

of key variables such as soil moisture and land 

use, data quality issues like missing values. 
 

3.0 Results and Discussion 

3.1 Descriptive Statistics of Input Data 
 

Exploratory analysis of the rainfall and runoff 

records (2010–2023) revealed pronounced 

seasonal and interannual variability typical of 

tropical monsoon climates. Annual rainfall 

totals varied between 970 mm and 1,390 mm, 

with approximately 85–90% of precipitation 

occurring between May and October, 

corresponding to the wet season. 

Streamflow exhibited a lagged hydrological 

response, with peak discharges generally 

occurring 1–3 days after major rainfall events. 

This delay is attributable to catchment storage 

effects, infiltration–excess runoff processes, 

and channel routing. The observed 

responsiveness of the Bida Basin to seasonal 

precipitation supports its suitability for data-

driven modeling approaches, particularly 

ANNs, which can exploit such seasonal input–

output patterns to improve prediction accuracy. 
 

3.2 ANN Model Training and Testing 

Performance 
 

The ANN model was trained on 70% of the 

dataset and evaluated on the remaining 30%. 

The architecture yielding the optimal results 

comprised two hidden layers with 64 and 32 

neurons, ReLU activation functions, and a 

linear (PURELIN) output function. Table 1 

presents the performance metrics for the 

training and testing phases. 

 

Table 1. Performance metrics of the ANN model for rainfall–runoff prediction in the Bida 

Basin 
 

Metric Training Set Testing Set 

Root Mean Square Error (RMSE, m³/s) 3.25 4.18 

Mean Absolute Error (MAE, m³/s) 2.56 3.37 

Coefficient of Determination (R²) 0.91 0.87 

Nash–Sutcliffe Efficiency (NSE) 0.89 0.83 

The ANN model achieved high predictive 

accuracy and robust generalization between the 

training and testing datasets. RMSE values of 

3.25 m³/s (training) and 4.18 m³/s (testing) 

indicate low overall prediction error, with only 

a moderate increase from training to testing, 

suggesting that the model was not significantly 

overfitted. Similarly, MAE values (2.56 m³/s 

for training and 3.37 m³/s for testing) confirm 

that the model maintained consistent accuracy 

across both datasets. 

The R² values of 0.91 (training) and 0.87 

(testing) reveal a strong linear association 

between observed and predicted runoff, 

demonstrating the ANN’s capability to capture 

the complex rainfall–runoff relationships in the 

basin. The NSE scores of 0.89 (training) and 

0.83 (testing) further validate the model’s 

ability to reproduce observed hydrological 

dynamics, as values above 0.75 are generally 

considered indicative of excellent model 

performance in hydrology. 

The performance gap between the wet and dry 

seasons (as noted in seasonal analysis not 

shown in Table 1) can be attributed to greater 

data variability and higher runoff magnitudes 

during the wet season, which enhance the 

ANN’s learning ability. In contrast, the dry 

season’s low-flow conditions and increased 

influence of evapotranspiration, groundwater 

storage, and human water abstraction introduce 

complexities not fully captured by the available 

input variables. 

Overall, these results confirm that the ANN 

model can serve as a reliable tool for 

streamflow forecasting in the Bida Basin, 
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supporting applications such as reservoir 

operation, flood risk management, and 

irrigation scheduling. However, future 

improvements could involve integrating 

additional predictors (e.g., soil moisture, land 

use changes) to further enhance prediction 

under varying hydrological regimes. 
 

3.3 Transfer Functions 
 

The performance of the ANN rainfall–runoff 

model was further evaluated by testing three 

activation functions—LOGSIG, PURELIN, 

and TANSIG—in the output layer. Each 

activation function was applied to the same 

dataset, and the predicted runoff values were 

compared with the simulated actual runoff 

data. Performance was assessed using the 

correlation coefficient (R) and the Root Mean 

Square Error (RMSE). Table 2 summarizes the 

performance of each activation function. 

 

Table 2. ANN model performance using different activation functions 

 

Activation Function Correlation Coefficient (R) RMSE (m³/s) 

LOGSIG 0.9995 26.21 

PURELIN 1.0000 0.00 

TANSIG 0.9547 21.88 

3.3.1 LOGSIG Activation Function 
 

The LOGSIG function achieved an R value of 

0.9995, indicating an almost perfect positive 

correlation between predicted and observed 

runoff. This shows that LOGSIG was highly 

effective in capturing the rainfall–runoff 

relationship. However, the RMSE of 26.21 

m³/s indicates a relatively larger deviation in 

absolute terms compared to the other functions, 

suggesting that while the model fit was strong, 

there were some mismatches in magnitude 

during peak or low flow conditions. 
 

3.3.2 PURELIN Activation Function 
 

PURELIN recorded a perfect correlation (R = 

1.0000) and an RMSE of 0.00 m³/s, meaning 

the predicted values exactly matched the actual 

values. While this performance appears ideal, 

such perfect prediction in hydrological 

modeling is uncommon in real-world scenarios 

and may indicate that the function directly 

mapped the input-output relationship without 

introducing any transformation. This outcome 

could be the result of overfitting, especially if 

the model memorized the training data rather 

than learning generalizable patterns. 
 

3.3.3 TANSIG Activation Function 
 

TANSIG produced a strong positive 

correlation (R = 0.9547) with an RMSE of 

21.88 m³/s. Although the correlation was lower 

than for LOGSIG and PURELIN, the RMSE 

was smaller than that of LOGSIG, indicating 

slightly better magnitude accuracy but less 

overall correlation strength. This suggests that 

TANSIG can capture the main patterns in the 

rainfall–runoff relationship, though it is less 

precise for extreme flows compared to the other 

two functions. 
 

3.3.4 Comparative Interpretation 
 

The results (Table 2) and Fig. 2 clearly show 

that the choice of activation function 

significantly influences model performance. 

PURELIN achieved perfect prediction, but in 

practical hydrological forecasting, such results 

often suggest overfitting or unrealistic model 

assumptions. LOGSIG provided the best trade-

off between high correlation and generalization 

potential, though the higher RMSE suggests 

some magnitude bias but TANSIG showed 

good predictive performance but with reduced 

correlation, indicating a less optimal fit to the 

dataset compared to the other two. 

For operational hydrological forecasting in  
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data-scarce basins such as Bida, LOGSIG may 

offer the most balanced performance, as it 

captures the rainfall–runoff dynamics 

effectively while avoiding the risk of 

overfitting seen with PURELIN. TANSIG 

remains a viable option for applications where 

nonlinear transformations are desired to reduce 

bias in magnitude predictions. 

 
Fig. 2. Comparison of ANN performance using different activation functions: LOGSIG, 

PURELIN, and TANSIG 
 

The figure illustrates the variation in predictive 

accuracy and correlation among the three 

transfer functions, emphasizing the trade-offs 

between correlation strength and absolute 

prediction error. 

3.4  Seasonal Prediction Analysis 

The ANN’s ability to predict runoff during  

different hydrological seasons was analyzed: 

● Wet Season (May–October): High 

accuracy (R² = 0.89; RMSE = 3.90 

m³/s) 

● Dry Season (November–April): 

Slightly reduced performance (R² = 

0.77; RMSE = 4.65 m³/s) 

 

Table 3: Seasonal Performance Metrics of the Model for Streamflow Prediction 
 

Season Accuracy R² RMSE 

Wet season (May – October) High accuracy 0.89 3.90 m³/s 

Dry season (November – April) Slightly reduced performance 0.77 4.65 m³/s 

Table 3 shows that the ANN model exhibited 

strong seasonal predictive capability. In the wet 

season (May–October), it achieved high 

accuracy, with an R² of 0.89 and a low RMSE 

of 3.90 m³/s, effectively capturing peak runoff 

events associated with heavy rainfall. During 

the dry season (November–April), 

performance declined slightly (R² = 0.77; 

RMSE = 4.65 m³/s), likely due to reduced 

rainfall variability and lower runoff volumes. 

Nevertheless, the model maintained reliable 

predictions throughout the year, demonstrating 

robustness under varying hydrological 

conditions in the Bida Basin.
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Fig. 3: Observed and Predicted Runoff 

Fig. 3 presents a scatter plot comparing 

predicted runoff values from the ANN model 

with observed streamflow data. The points 

cluster closely around the 1:1 reference line, 

indicating a strong correlation (R² = 0.87) 

between observed and predicted values. This 

suggests that the ANN model effectively 

captures the nonlinear rainfall–runoff 

relationship in the Bida Basin. Overall, the 

model demonstrates excellent predictive 

accuracy, with most predictions showing only 

minimal deviation from actual measurements. 

Time-Series Comparison of Observed and 

Predicted Runoff 

This figure displays daily runoff over time, 

showing two curves one for observed values 

and the other for ANN predictions. The ANN 

model closely follows the observed runoff 

trend, accurately capturing seasonal peaks and 

low-flow periods. The model shows strong 

temporal accuracy, particularly during the wet 

season, when runoff typically surges in 

response to high rainfall. 

Residual Plot 

This plot visualizes the residuals (prediction 

errors) against predicted runoff values. The 

residuals are randomly scattered around zero, 

indicating no systematic bias and validating the 

model’s assumptions. The random distribution 

of errors confirms model robustness and 

absence of underfitting or overfitting. 

Sensitivity Analysis of Input Parameters 

This bar chart shows the relative contribution 

of each input feature to the ANN’s output. 

Rainfall contributes over 70% to runoff 

prediction accuracy, while temperature and 

time-related variables have smaller, supportive 

effects. Rainfall is the dominant factor 

influencing runoff in the Bida Basin, validating 

its selection as the primary input in the model. 

Comparison of results between ANN and 

traditional models 
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To compare the results between the Artificial 

Neural Network (ANN) and traditional models 

for simulating runoff, we considered several 

key performance metrics, including the 

correlation coefficient (R) and Root Mean 

Square Error (RMSE). Traditional models 

include linear regression, polynomial 

regression, or other statistical methods 

commonly used in hydrology. 

The study compared ANN, and a multiple 

linear regression (MLR) model using the same 

input data. 
 

Table 4: Comparative Performance Metrics 

of ANN and MLR Models for Streamflow 

Prediction 
 

Metric ANN Model MLR Model 

RMSE 4.18 m³/s 6.75 m³/s 

R² 0.87 0.68 

NSE 0.83 0.65 

The model performance metrics for ANN and 

MLR are summarized in Table 4. The 

comparison between the ANN and Multiple 

Linear Regression (MLR) models highlights 

the superior performance of the ANN in 

rainfall–runoff prediction. The ANN achieved 

a lower RMSE (4.18 m³/s) compared to MLR 

(6.75 m³/s), indicating more accurate 

predictions. Its higher R² value (0.87 vs. 0.68) 

shows a stronger correlation between predicted 

and observed runoff. Additionally, the ANN's 

NSE of 0.83, versus 0.65 for MLR, 

demonstrates greater efficiency in capturing 

runoff variability. These results confirm that 

the ANN outperformed the MLR model across 

all evaluation metrics, reinforcing the 

effectiveness of data-driven nonlinear 

modeling for runoff prediction, particularly in 

data-scarce basins. 

 

Table 5: Performance Metrics (Correlation Coefficient and RMSE) for ANN Models and 

Linear Regression 
 

MODEL Correlation coefficient (R) RMSE 

ANN (LOGSIG) 0.9994889625 26.2131423698 

ANN (PURELIN) 1.0 0.0 

ANN (TANSIG) 0.9547135433 21.8821504379 

LINEAR REGRESSION 1.0 0.0 

ANN (LOGSIG): 

Table 5 shows that the Correlation Coefficient 

(R): is approximately 0.9995, indicating a very 

strong positive correlation with the actual 

runoff values. RMSE: approximately 26.21, 

suggesting some deviation from the actual 

values. 

Ann (purelin): 

Correlation Coefficient (R): Exactly 1.0, 

indicating a perfect linear relationship with the 

actual runoff values. RMSE: 0.0, meaning 

there is no error in predictions, as the predicted 

values match the actual values perfectly. 

ANN (TANSIG): 

Correlation Coefficient (R): Approximately 

0.9547, showing a strong positive correlation, 

but not as strong as LOGSIG or PURELIN. 

RMSE: Approximately 21.88, indicating some 

error in predictions. 

Linear Regression: 

Correlation Coefficient (R): Exactly 1.0, 

similar to PURELIN, indicating a perfect fit. 

RMSE: 0.0, indicating no error in predictions, 

as the model outputs the actual values directly. 

The ANN with PURELIN and the Linear 

Regression models both achieve perfect 

predictions, which are ideal but may not always 

be realistic in more complex scenarios. 

The LOGSIG function performs very well, 

with a high correlation and reasonable RMSE, 

indicating it captures the relationship 

effectively. 
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The TANSIG function shows a good fit but 

with some variability, suggesting it captures 

the underlying patterns but may not be as 

precise as the other two. 

The linear regression model's ability to achieve 

perfect predictions highlights its effectiveness 

in scenarios where the relationship between 

variables is linear and straightforward. 

However, it is essential to note that while linear 

regression can perform exceptionally well in 

such cases, it may not generalize effectively to 

more complex, non-linear relationships found 

in real-world data. 

Table 6: Validation dataset using the ANN 

(LOGSIG) model activation function and 

Linear Regression  

MODEL  Correlation coefficient (R) RMSE 

ANN (LOGSIG) -4.1009 52.341 

LINEAR REGRESSION  1.0 0.0 

ANN (LOGSIG): 

Table 6 shows that the Correlation Coefficient 

(R): is approximately -4.10, which indicates a 

poor fit. A negative R value suggests that the 

model's predictions are inversely related to the 

actual values, which is unexpected and 

indicates that the model is not performing well. 

RMSE: is approximately 52.34, indicating a 

significant deviation from the actual values. 

This high RMSE suggests that the predictions 

are far from the true values. 

Linear Regression: 

Correlation Coefficient (R): Exactly 1.0, 

indicating a perfect fit with the actual runoff 

values. RMSE: 0.0, meaning there is no error 

in predictions, as the predicted values match 

the actual values perfectly. 

The ANN model with LOGSIG activation did 

not perform well on the validation dataset, as 

indicated by the negative correlation 

coefficient and high RMSE. This suggests that 

the model may not have captured the 

underlying relationship in the data effectively. 

In contrast, the linear regression model 

achieved perfect predictions, demonstrating its 

effectiveness in this scenario. 

 

Fig. 4:  Observed vs. Predicted flows, training/validation loss, scatter plots 
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In Fig. 4, the blue line represents the observed 

flow values while the green line indicates the 

predicted values from the linear regression 

model, which closely follow the observed 

values, demonstrating a perfect fit. The red line 

shows the predicted values from the ANN 

model using the LOGSIG activation function. 

As seen, these predictions deviate significantly 

from the observed values, indicating poor 

performance. 

 
Fig. 5:  Training and validation loss over epochs for both the ANN and linear regression 

models: 

The orange line in fig. 5 represents the training 

loss for the ANN model, which decreases over 

the epochs, indicating that the model is learning 

and improving its fit to the training data. The 

purple line shows the validation loss for the 

ANN model, which also decreases but may not 

follow the training loss closely. This could 

indicate some level of overfitting if the 

validation loss starts to increase after a certain 

point. The green and blue dashed lines 

represent the training and validation loss for the 

linear regression model, which remain constant 

at zero. This reflects the perfect fit achieved by 

the linear regression model, as it predicts the 

training and validation data without any error. 

The scatter plot in fig. 6 shows the predicted 

values from the linear regression model against 

the observed values. The points are closely 

aligned along the 45-degree line (dashed blue 

line), indicating that the predictions match the 

observed values perfectly. This confirms the 

model's high accuracy and effectiveness in this 

scenario. 

The scatter plot for the ANN model shows a 

significant spread of points, indicating that the 

predicted values do not align well with the 

observed values. Many points are far from the 

45-degree line, suggesting that the ANN model 

is not accurately predicting the runoff values. 

This aligns with the earlier findings of a 

negative correlation coefficient and high 

RMSE for the ANN model. 
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Fig. 6: Relationship between observed and predicted values for both the linear regression 

and ANN (using LOGSIG activation) model
 

The visualizations cearly demonstrate the 

strengths of the linear regression model, which 

achieved perfect predictions, while the ANN 

model struggled to capture the underlying 

relationship in the data. The training and 

validation loss plots indicate that the ANN 

model was learning but may have faced 

challenges in generalizing to the validation set, 

leading to poor performance. 

Discussion 

The Artificial Neural Network (ANN) model 

established for the Bida Basin demonstrated 

significant predictive accuracy, attaining a 

testing phase coefficient of determination (R²) 

of 0.87 and a Nash–Sutcliffe Efficiency (NSE) 

of 0.83. These performance metrics emphasize 

the model's robustness in effectively 

representing the nonlinear dynamics associated 

with rainfall–runoff processes. Comparative 

analyses conducted within Nigeria have 

reported analogous outcomes. For example, 

Ofordu et al. (2024) utilized diverse transfer 

functions within ANN frameworks to forecast 

rainfall patterns in Sokoto, Nigeria, achieving 

an R² of 0.8789 and a minimal RMSE of 

0.0125, thereby illustrating the efficacy of the 

tansig transfer function in delineating rainfall 

variability. In a similar vein, Bello and 

Mamman (2018) employed ANN models that 

integrated El Niño–Southern Oscillation 

indices for monthly rainfall forecasting in 

Kano, Nigeria, achieving a correlation 

coefficient of 0.73, which exceeded that of 

conventional linear models. Furthermore, 

beyond the borders of Nigeria, Biao et al. 

(2024) executed ANN models within the Mono 

River Basin of Benin, West Africa, realizing 

correlation coefficients that spanned from 0.93 

to 0.99, thus affirming the model's applicability 

across varied hydrological contexts. 
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Collectively, these studies substantiate the 

enhanced capability of ANN models to 

encapsulate the nonlinear dynamics intrinsic to 

rainfall–runoff processes, particularly in 

scenarios where traditional methodologies may 

prove inadequate. The ANN model exhibited 

commendable performance throughout various 

hydrological seasons. During the wet season 

(May–October), the model attained an R² of 

0.89 and an RMSE of 3.90 m³/s, proficiently 

capturing peak flow phenomena. In contrast, 

during the dry season (November–April), 

although there was a marginal decrease in 

performance (R² = 0.77; RMSE = 4.65 m³/s), 

the model continued to furnish reliable 

predictions. This seasonal robustness is 

essential for effective water resource 

management, particularly in regions such as 

Bida, where seasonal variability significantly 

affects water availability. The sensitivity 

analysis indicated that rainfall emerged as the 

most pivotal predictor, contributing over 70% 

to runoff variability. This observation is 

consistent with the findings of Adeogun et al. 

(2024), which underscored the predominant 

influence of rainfall in runoff generation within 

the Awun River watershed. The inclusion of 

additional variables, such as temperature and 

temporal indices, exhibited a comparatively 

diminished effect, indicating that while these 

factors contribute to runoff processes, rainfall 

remains the principal driver within the Bida 

Basin. 

The enhanced performance of the ANN model 

in comparison to traditional linear models 

highlights the prospective advantages of 

machine learning methodologies in 

hydrological forecasting. The model's capacity 

to capture intricate, nonlinear interrelationships 

between rainfall and runoff amplifies its 

applicability in flood prediction and water 

resource management. Moreover, the 

successful implementation of ANN models 

across diverse Nigerian contexts, as evidenced 

by investigations conducted in Sokoto, Kano, 

and the Awun River watershed, bolsters their 

adaptability and efficacy across varying 

climatic and hydrological conditions. 

Notwithstanding the robust predictive 

capabilities exhibited by the ANN model, 

certain limitations merit consideration. The 

model's performance experienced a slight 

decline during the dry season, potentially 

attributable to diminished data variability and 

the influence of other hydrological factors that 

were not incorporated within the existing 

model. Future research endeavors could 

investigate the integration of supplementary 

variables, including soil moisture, land use 

alterations, and evapotranspiration rates, to 

augment model accuracy. Furthermore, the 

exploration of hybrid models that integrate 

Artificial Neural Networks (ANN) with 

alternative machine learning methodologies, 

such as Long Short-Term Memory (LSTM) 

networks, warrants investigation to enhance 

predictive efficacy, as posited by Li et al. 

(2021) in their comprehensive analysis of high 

temporal resolution rainfall-runoff modeling. 

The comparison between ANN and traditional 

models for runoff simulation shows that ANN 

generally outperforms multiple linear 

regressions by capturing nonlinear 

relationships, resulting in more accurate 

predictions with lower RMSE and higher 

correlation. However, ANN’s performance 

varies with activation functions, where 

PURELIN achieves near-perfect fits but may 

oversimplify, while LOGSIG and TANSIG 

capture nonlinear patterns with some errors. 

Despite good training results, ANN struggled 

on validation data, indicating possible 

overfitting or insufficient generalization. 

Conversely, linear regression performed 

perfectly on both training and validation sets, 

highlighting its effectiveness in modeling 

straightforward linear relationships but 

potentially limiting in complex scenarios. 

Conclusion 

This investigation underscores the robust 

predictive capability of Artificial Neural 

Networks (ANNs) in the context of modeling 
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runoff dynamics within the Bida Basin, 

illustrating the model’s proficiency in 

capturing the intricate and nonlinear 

relationships that exist between precipitation 

and runoff. The ANN model attained 

commendable statistical performance, 

evidenced by an R² of 0.87 and NSE of 0.83, 

surpassing conventional linear methodologies 

while exhibiting seasonal resilience, 

particularly during peak flow periods. Rainfall 

was identified as the primary predictor of 

runoff, substantiating its preeminent role in 

semi-humid tropical basins. The broader 

implications of this study affirm the validity of 

machine learning methodologies—especially 

ANN frameworks—as efficacious instruments 

for hydrological forecasting and flood risk 

management in regions characterized by data 

scarcity. This research contributes to the 

expanding corpus of knowledge that supports 

the application of ANN in hydrological 

modeling across various West African basins, 

thereby reinforcing their scalability and 

adaptability to differing climatic conditions. 

Future inquiries should contemplate the 

integration of additional hydrological 

variables, including land use, 

evapotranspiration, and soil moisture, to 

further refine predictive accuracy. The 

utilization of hybrid models, like LSTM 

networks, presents a promising avenue for 

enhancing temporal resolution and long-term 

forecasting capabilities. This study advocates 

for water resource managers, policymakers, 

and researchers to adopt AI-driven modeling 

methodologies to facilitate informed decision-

making in the context of escalating climate 

variability and challenges related to water 

resources. 
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